
KVSB - Dr.K.V.SUBBA REDDY

SCHOOL OF BUSINESS MANAGEMENT

MCA & MBA COLLEGES

Institute Name:
Dr. K. V. Subba Reddy School of Business

Management

College Code: JJ
ICET Code: KVSB

Name of
Programmes: MBA & MCA

SUBJECT: DATA STRUCTURES

Data Structures
(Course code: 21F00104, for MCA - Regulations: R21)

Introduction to C Language:

C programming is a general-purpose, procedural programming language developed in 1972 by Dennis
M.Ritchie at the Bell Telephone Laboratories (AT&T Bell Laboratories) to develop the UNIX operating system. C is
the most widely used computer language. It has the popularity along with Java programming language, which is
also equally popular and most widely used among modern software programmers.

Why to learn C Programming:
C programming language is a must for students and working professionals to become a great Software

Engineer especially when they are working in Software Development Domain. C has some advantages to
learn:

 Easy to learn
 Structured language
 It produces efficient programs
 It can handle low-level activities
 It can be compiled on a variety of computer platforms

 C was invented to write an operating system called UNIX.
 C is a successor of B language which was introduced around the early 1970s.
 The language was formalized in 1988 by the American National Standard Institute (ANSI).
 The UNIX OS was totally written in C.
 Today C is the most widely used and popular System Programming Language.

C Language Elements:
The basic C Language elements are used to create a C program. These elements are - the valid

 character set,
 identifiers,
 keywords,
 basic data types and their representation,
 Constants and
 Variables.

The C Character Set

C uses the uppercase English alphabets A to Z, the lowercase letters a to z, the digits 0 to 9, and certain
special characters as building blocks to form basic program elements viz. constants, variables, operators,
expressions and statements.
The special characters are listed below:

! * + \ " <

(= | { >

%) ~ ; } /

^ - [: , ?

& -] ' . (blank)

In addition, certain combinations of these characters, such as '\b', '\n' and '\t', are used to represent special
condition such as backspace, newline and horizontal tab, respectively. These character combinations are
known as escape sequences.

Identifiers
Identifiers are names given to various items in the program, such as variables, functions and arrays.

An identifier consists of letters and digits, in any order, except that the first character must be a letter. Both
upper and lowercase letters are permitted. Upper and lowercase letters are not interchangeable (i.e., an
uppercase letter is not equivalent to the corresponding lowercase letter). The underscore character (_) can
also be included, and it is treated as a letter.

Keywords like if, else, int, float, etc., have special meaning and they cannot be used as identifier
names.
The following are examples of valid identifier names:

A, ab123, velocity, stud_name,
circumference, Average, TOTAL

The following names are not valid identifiers:
1st - the first character must be a letter

"Jamshedpur" - illegal characters (")

stud-name - illegal character (-)
stud name - illegal character (blank space)

Although an identifier can be long, most implementations recognize typically 31 characters.

Keywords (Reserved Words)
Keywords/ Reserved words given for specific purpose; we can’t use them for other purpose. The following
list shows the reserved words in C. These reserved words may not be used as constants or variables or any
other identifier names.

auto else long switch
break enum register typedef
case extern return union
char float short unsigned
const for signed void

continue goto sizeof volatile
default if static while

do int struct _Packed
double

Data Types: means type / classification of the data which we are using in the program.
There are only few basic data types in C. These are listed in the table below:
Data type Description Size Range

char single character 1 byte 0 - 255
int integer number 4 bytes -2147483648 to 2147483647
float single precision floating point number (number

containing fraction & or an exponent)
4 bytes 3.4E-38 to 3.4E+38

double double precision floating point number 8 bytes 1.7E-308 to 1.7E+308

The list of data types can be increased by using the data type qualifiers such as - short, long, and
unsigned. For example, an integer quantity can be defined as long, short, signed or unsigned integer.

The memory requirement of an integer data varies depending on the compilers used. The qualified
basic data types and their sizes are shown in table below.

Data type in C Size Range

short int 2 bytes -32768 to 32767

long int 4 bytes -2147483648 to 2147483647

unsigned short int 2 bytes 0 to 65535

unsigned int 4 bytes 0 to 4294967295

unsigned long int 4 bytes 0 to 4294967295

long double (extended precision) 8 bytes 1.7E-308 to1.7E+308

Constants:

Constants refer to fixed values that the program may not alter / modified during its execution.
These fixed values are also called literals.

Constants can be of any of the basic data types like an integer constant, a floating constant, a
character constant, or a string literal. There are enumeration constants as well.

Constants are treated just like regular variables except that their values cannot be modified after
their definition.

Examples:
Constant Example

Decimal Constant 10, 20, 450 etc.
Real or Floating-point Constant 10.3, 20.2, 450.6 etc.
Octal Constant 021, 033, 046 etc.
Hexadecimal Constant 0x2a, 0x7b, 0xaa etc.
Character Constant 'a', 'b', 'x' etc.
String Constant "c", "c program", "c in javatpoint" etc.

There are two ways to define constant in C programming.
1. const keyword
2. #define preprocessor

1) The const keyword is used to define constant in C programming.
const float PI=3.14;

If we declare like this, then value of the PI variable can't be changed thought the program execution.

If you try to change the value of the PI in this program, it will give you compile time error.
PI=4.5; if you add like this, program will give compile time error.

2) #define preprocessor
The #define preprocessor is also used to define constant. We will learn about #define preprocessor

directive later.
See here for: #define preprocessor directive.

#include <stdio.h>
#define PI 3.14
main() {

printf("%f",PI);
}

Output: 3.14

#include<stdio.h>
int main()
{ const float PI=3.14;

printf("The value of PI is: %f",PI);
return 0;

}

Output:
The value of PIis: 3.140000

Variables in C:
A variable is a name of the memory location. It is used to store data. Its value can be changed, and it can be
reused many times.
It is a way to represent memory location through symbol so that it can be easily identified.

Let's see the syntax to declare a variable: datatype variable; or
datatype variable_list;

Example:
int a;
float b;
char c;

Here, a, b, c are variables. The int, float, char are the data types.

Rules for defining variables

 A variable can have alphabets, digits, and underscore.
 A variable name can start with the alphabet, and underscore only. It can't start with a digit.
 No whitespace is allowed within the variable name.
 A variable name must not be any reserved word or keyword, e.g. int, floats, etc.

Valid variable names:
int a;
int _ab;
int a30;

Invalid variable names:
int 2;
int a b;
int long;

Variable Declarations and Data Types
 Variables should be declared in the C program before to use.
 Memory space is not allocated for a variable while declaration. It happens only on variable definition.
 Variable initialization means assigning a value to the variable.

Syntax:
Variable declaration data_type variable_name;

Example: int x, y, z;
char gender;

Variable initialization data_type variable_name = value;
Example: int x = 52, y = 30;
char gender = ‘F’;
Based on the declaration place in the program we have the following types of variables in C.

// C program to add two numbers
#include<stdio.h>
int main()

{
int A, B, sum = 0;
printf("Enter value for A: \n");
scanf("%d", &A);
printf("Enter value for B: \n");
scanf("%d", &B);
sum = A + B;
// Print the sum
printf("Sum of A and B is: %d", sum);
return 0;

}
Output:
Enter value for A: 5
Enter value for B: 3
Sum of A and B is: 8

void main() {
int x=10;
//local variable (also automatic)
auto int y=20; //automatic variable
}

Types of Variables in C
There are many types of variables in c:

1. local variable
2. global variable
3. static variable
4. automatic variable
5. external variable

Local Variable
A variable that is declared inside the function or block is called a local variable.It must be declared

at the start of the block.

You must have to initialize the local variable before it is used.
Global Variable

A variable that is declared outside the function or block is called a global variable. Any function
can change the value of the global variable. It is available to all the functions.
It must be declared at the start of the block.

If you call this function many times, the local variable will print the same value for each function
call, e.g, 11,11,11 and so on. But the static variable will print the incremented value in each function
call, e.g. 11, 12, 13 and so on.
Automatic Variable

All variables in C that are declared inside the block, are automatic variables by default. We can
explicitly declare an automatic variable using auto keyword.

External Variable
We can share a variable in multiple C source files by using an external variable. To declare an

external variable, you need to use extern keyword.
myfile.h
Syntax: extern int x=10; //external variable (also global)

Example: void function1()
{
int x=10; //local variable
}

Example: int value=20;//global variable
void function1()
{
int x=10;//local variable
}

Static Variable

A variable that is declared with the static keyword is called static variable. It retains its value
between multiple function calls. Example: void function1()

{
int x=10;//local variable
static int y=10;//static variable
x=x+1;
y=y+1;
printf("%d,%d",x,y);
}

Data Types in C
A data type specifies the type of data that a variable can store such as integer, floating, character, etc.

There are the following data types in C language.

Types Data Types
Basic Data Type int, char, float, double
Derived Data Type array, pointer, structure, union
Enumeration Data Type enum
Void Data Type void

include "myfile.h"
#include <stdio.h>
void printValue()
{

printf("Global variable: %d", global_variable);
}

Output:

The value of auto variable : 28

The value of extern variables x and b : 32,8

The value of modified extern variable x : 15

Types & Description

Basic Types
They are arithmetic types and are further classified into: (a) integer types and (b)
floating-point types.

Enumerated types
They are again arithmetic types and they are used to define variables that can only
assign certain discrete integer values throughout the program.

The type void
The type specifier void indicates that no value is available.

Derived types
They include (a) Pointer types, (b) Array types, (c) Structure types, (d) Union types and
(e) Function types.

The basic data types are integer-based and floating-point based. C language supports both signed and
unsigned literals. The memory size of the basic data types may change according to 32 or 64-bit operating
system.

Data Types Memory Size Range

char 1 byte −128 to 127

signed char 1 byte −128 to 127

unsigned char 1 byte 0 to 255

short 2 byte −32,768 to 32,767

signed short 2 byte −32,768 to 32,767

unsigned short 2 byte 0 to 65,535

int 2 byte −32,768 to 32,767

signed int 2 byte −32,768 to 32,767

unsigned int 2 byte 0 to 65,535

short int 2 byte −32,768 to 32,767

signed short int 2 byte −32,768 to 32,767

unsigned short int 2 byte 0 to 65,535

long int 4 byte -2,147,483,648 to 2,147,483,647

signed long int 4 byte -2,147,483,648 to 2,147,483,647

unsigned long int 4 byte 0 to 4,294,967,295

float 4 byte

double 8 byte

long double 10byte

Data Structures for MCA by - RKR– Ashoka Women’s Engineering College, Kurnool Page 9

Operators and Expressions:
 The symbols which are used to perform logical and mathematical operations in a C program are called

C operators.
 These C operators join individual constants and variables to form expressions.
 Operators, functions, constants and variables are combined together to form expressions.
 Consider the expression A + B * 5. Where, +, * are operators, A, B are variables, 5 is constant and A

+ B * 5 is an expression.
Types of C Operators:
C language offers many types of operators. They are,

 Arithmetic Operators/Operation Example

+ (Addition) A+B
– (Subtraction) A-B
* (multiplication) A*B
/ (Division) A/B
% (Modulus) A%B

These are used to assign the values for the variables in C programs.

Operators Example / Description

= sum = 10;
10 is assigned to variable sum

+= sum += 10;
This is same as sum = sum + 10

-= sum -= 10;
This is same as sum = sum – 10

*=
sum *= 10;
This is same as sum = sum * 10

/=
sum /= 10;
This is same as sum = sum / 10

%=
sum %= 10;
This is same as sum = sum % 10

&=
sum&=10;
This is same as sum = sum & 10

^= sum ^= 10;
This is same as sum = sum ^ 10

1. Arithmetic operators
2. Assignment operators
3. Relational operators
4. Logical operators
5. Bit wise operators
6. Conditional operators (ternary operators)
7. Increment/decrement operators
8. Special operators

1) Arithmetic operators:
These are used to perform mathematical calculations like addition, subtraction, multiplication, division

and modulus.

 For example, if the value “10” is to be assigned for the variable “sum”, it can be assigned as “sum =
10;”

 There are 2 categories of assignment operators in C language. They are,
1. Simple assignment operator (Example: =)
2. Compound assignment operators(Example: +=, -=, *=, /=, %=, &=, ^=)

2) Assignment operators:

3) Relational operators:
These operators are used to compare the value of two variables.

 Relational operators are used to find the relation between two variables. i.e. to compare the values
of two variables in a C program.

 Operators Example/Description
> x > y (x is greater than y)
< x < y (x is less than y)

>= x >= y (x is greater than or equal to y)
<= x <= y (x is less than or equal to y)
== x == y (x is equal to y)
!= x != y (x is not equal to y)

Operators Example/Description
&& (logical AND) (x>5)&&(y<5)

It returns true when both conditions are true
|| (logical OR) (x>=10)||(y>=10)

It returns true when at-least one of the condition is true
! (logical NOT) !((x>5)&&(y<5))

It reverses the state of the operand “((x>5) && (y<5))”
If “((x>5) && (y<5))” is true, logical NOT operator makes it false

5) Bit wise operators:
These operators are used to perform bit operations on given two variables.

 These operators are used to perform bit operations. Decimal values are converted into binary values
which are the sequence of bits and bit wise operators work on these bits.

 Bit wise operators in C language are & (bitwise AND), | (bitwise OR), ~ (bitwise NOT), ^ (XOR), <<
(left shift) and >> (right shift).

Truth table for bit wise operation & bit wise operators:

Below are the bit-wise operators and their name in c language.
1. & – Bitwise AND
2. | – Bitwise OR
3. ~ – Bitwise NOT
4. ^ – XOR
5. << – Left Shift

>> – Right Shift
6) Conditional operators (ternary operators):

Conditional operators return one value if condition is true and returns another value is condition is
false.
This operator is also called as ternary operator.

Syntax :
Example :

(Condition? true_value: false_value);
(A > 100 ? 0 : 1);

In above example, if A is greater than 100, 0 is returned else 1 is returned. This is equal to if else
conditional statements.

4) Logical operators:
These operators are used to perform logical operations on the given expressions.

 There are 3 logical operators in C language. They are, logical AND (&&), logical OR (||) and logical
NOT (!).

Operators Description
& This is used to get the address of the variable.

Example :&a will give address of a.
* This is used as pointer to a variable.

Example : * a where, * is pointer to the variable a.
sizeof () This gives the size of the variable.

Example : size of (char) will give us 1.

An expression is a combination of operators, constants and variables. An expression may consist

of one or more operands, and zero or more operators to produce a value.
Example:

a+b
c
s-1/7*f
.
.
etc

Types of Expressions:
Expressions may be of the following types:
 Constant expressions: Constant Expressions consists of only constant values. A constant value is

one that doesn’t change.
Examples:
5, 10 + 5 / 6.0, 'x’

 Integral expressions: Integral Expressions are those which produce integer results after
implementing all the automatic and explicit type conversions.

Examples:

7) Increment/decrement operators:
Increment operators are used to increase the value of the variable by one and decrement operators are
used to decrease the value of the variable by one in C programs.
Syntax:
Increment operator: ++var_name; (or) var_name++;
Decrement operator: – -var_name; (or) var_name – -;
Example:
Increment operator : ++ i ; i ++ ;
Decrement operator : – – i ; i – – ;

Example program for increment operators

8) Special operators:

Below are some of the special operators that the C programming language offers.

#include <stdio.h>
int main()
{
int i=1;
while(i<10)
{

printf("%d ",i);
i++;

}
}
OUTPUT:
1 2 3 4 5 6 7 8 9

Expressions:

x, x * y, x + int(5.0)
where x and y are integer variables.

 Floating expressions: Float Expressions are which produce floating point results after implementing
all the automatic and explicit type conversions.
Examples:
x + y, 10.75
where x and y are floating point variables.

 Relational expressions: Relational Expressions yield results of type bool which takes a value true or
false. When arithmetic expressions are used on either side of a relational operator, they will be
evaluated first and then the results compared. Relational expressions are also known as Boolean
expressions.
Examples:

x <= y, x + y > 2
 Logical expressions: Logical Expressions combine two or more relational expressions and produces

bool type results.
Examples:

x > y && x == 10, x == 10 || y == 5
 Pointer expressions: Pointer Expressions produce address values.

Examples:
&x, ptr, ptr++

where x is a variable and ptr is a pointer.
 Bitwise expressions: Bitwise Expressions are used to manipulate data at bit level. They are basically

used for testing or shifting bits.
Examples:

x << 3
shifts three bit position to left

y >> 1
shifts one bit position to right.
Shift operators are often used for multiplication and division by powers of two.

Note: An expression may also use combinations of the above expressions. Such expressions are known
as compound expressions.

Decision Statements - If and Switch Statements:

There come situations in real life when we need to make some decisions and based on these
decisions, we decide what we should do next. Similar situations arise in programming also where we
need to make some decisions and based on these decisions we will execute the next block of code.

For example, in C if x occurs then execute y else execute z. There can also be multiple conditions
like in C if x occurs then execute p, else if condition y occurs execute q, else execute r.

This condition of C else-if is one of the many ways of importing multiple conditions.

Decision-making statements in programming languages decide the direction of the flow of

program execution. Decision-making statements available in C or C++ are:

1. if statement
2. if..else statements
3. nested if statements
4. if-else-if ladder
5. switch statements
6. Jump Statements:

a. break
b. continue
c. goto
d. return

if statement in C:

if statement is the most simple decision-making statement. It is used to decide whether a certain
statement or block of statements will be executed or not i.e if a certain condition is true then a block of
statement is executed otherwise not.
Syntax:

if(condition)
{

// Statements to execute if
// condition is true

}
Here, the condition after evaluation will be either true or false. C if statement accepts boolean

values – if the value is true then it will execute the block of statements below it otherwise not.

If we do not provide the curly braces ‘{‘ and ‘}’ after if(condition) then by default if statement
will consider the first immediately below statement to be inside its block.

Example:

if(condition)

statement1;
statement2;

Flowchart

// Here if the condition is true, if block
// will consider only statement1 to be inside
// its block.

The condition present in the if statement: is false. So, the block below the if statement is not executed.

// C program to illustrate If statement
#include <stdio.h>
int main()

{
int i = 10;

if(i> 15)
{

printf("10 is less than 15");
}

printf("I am Not in if");
}
Output:
I am not in if

if-else:
The if statement alone tells us that if a condition is true it will execute a block of statements and if

the condition is false it won’t. But what if we want to do something else if the condition is false. Here
comes the C else statement. We can use the else statement with if statement to execute a block of code
when the condition is false.
Syntax:

if (condition)
{
// Executes this block if
// condition is true
}
else
{
// Executes this block if
// condition is false
}

Flowchart:

Example:

The block of code following the else statement is executed as the condition present in the if statement is
false.

Nested-if in C:
A nested if in C is an if statement that is the target of another if statement. Nested if statements mean an
if statement inside another if statement. Yes, both C and C++ allow us to nested if statements within if
statements, i.e, we can place an if statement inside another if statement.
Syntax:

if (condition1)
{

// Executes when condition1 is true
if (condition2)
{

// Executes when condition2 is true

// C program to illustrate If statement
#include <stdio.h>
int main() {

int i = 20;
if(i< 15)

{
printf("i is smaller than 15");

}
else

{
printf("i is greater than 15");

}
return 0;

}

Output:

i is greater than 15

}
}

Flowchart

 if-else-if ladder in C:
Here, a user can decide among multiple options. The C if statements are executed from the top

down. As soon as one of the conditions controlling the if is true, the statement associated with that if is
executed, and the rest of the C else-if ladder is bypassed. If none of the conditions are true, then the final
else statement will be executed.

Example:
// C program to illustrate nested-if statement
#include <stdio.h>
int main() {

int i = 10;
if(i = =10)
{

// First if statement
if(i< 15)

printf("i is smaller than 15\n");
// Nested - if statement

// Will only be executed if statement above
// is true
if(i< 12)

printf("i is smaller than 12 too\n");
else

printf("i is greater than 15");
}
return0;

}

Output:

i is smaller than 15
i is smaller than 12 too

Syntax: if (condition)
statement;

else if (condition)
statement;

.

.
else

statement;

Example:
// C program to illustrate nested-if statement

#include <stdio.h>
int main() {

int i = 20;

if(i == 10)
printf("i is 10");

elseif(i == 15)
printf("i is 15");

elseif(i == 20)
printf("i is 20");

else
printf("i is not present");

}

Output:
i is 20

Jump Statements in C
These statements are used in C orC++ for the unconditional flow of control throughout the functions in a
program. They support four types of jump statements:

1. C break: This loop control statement is used to terminate the loop. As soon as the break statement is
encountered from within a loop, the loop iterations stop there, and control returns from the loop
immediately to the first statement after the loop.
Syntax:
break;

1. Basically, break statements are used in situations when we are not sure about the actual number of
iterations for the loop or we want to terminate the loop based on some condition.

Example:
// C program to illustrate

// Linear Search
#include <stdio.h>
voidfindElement(int arr[], int size, int key)

{
// loop to traverse array and search for key
for(int i = 0; i< size; i++) {

if(arr[i] == key) {
printf("Element found at position: %d", (i + 1));
break;

}
}

}

int main() {

int arr[] = { 1, 2, 3, 4, 5, 6 };
// no of elements

int n = 6;
// key to be searched

int key = 3;
// Calling function to find the key
findElement(arr, n, key);
return 0;

}

Output:

Element found at position: 3

continue: This loop control statement is just like the break statement. The continue statement is
opposite to that of the break statement, instead of terminating the loop, it forces to execute the next
iteration of the loop.
As the name suggests the continue statement forces the loop to continue or execute the next iteration.
When the continue statement is executed in the loop, the code inside the loop following the continue
statement will be skipped and the next iteration of the loop will begin.

goto: The goto statement in C/C++ also referred to as unconditional jump statement can be used to
jump from one point to another within a function.

Example:
// C program to explain the use
// of continue statement
#include <stdio.h>
int main() {

// loop from 1 to 10
for(int i = 1; i<= 10; i++) {

// If i is equals to 6,
// continue to next iteration
// without printing
if(i = = 6)

continue;
else

// otherwise print the value of i
printf("%d ", i);

}
return 0;

}

Output:

1 2 3 4 5 7 8 9 10

Syntax:

1. In the above syntax, the first line tells the compiler to go to or jump to the statement marked as a
label. Here label is a user-defined identifier that indicates the target statement. The statement
immediately followed after ‘label:’ is the destination statement. The ‘label:’ can also appear before
the ‘goto label;’ statement in the above syntax.

examples to use goto statement:
Examples:
// C program to print numbers

// from 1 to 10 using goto statement
#include <stdio.h>
// function to print numbers from 1 to 10

voidprintNumbers()
{

int n = 1;
label:

printf("%d ",n);
n++;
if(n <= 10)

goto label;
}

// Driver program to test above function
int main() {

printNumbers();
return 0;

}

Output:
1 2 3 4 5 6 7 8 9 10

return: The return in C or C++ returns the flow of the execution to the function from where it is
called. This statement does not mandatorily need any conditional statements. As soon as the statement is
executed, the flow of the program stops immediately and return the control from where it was called. The
return statement may or may not return anything for a void function, but for a non-void function, a return
value is must be returned.
Syntax: return[expression];

Switch Statement:
C switch statement is used when you have multiple possibilities for the if statement. Switch case

will allow you to choose from multiple options. When we compare it to a general electric switchboard, you
will have many switches in the switchboard but you will only select the required switch, similarly, the
switch case allows you to set the necessary statements for the user.

Example:
// C code to illustrate return

#include <stdio.h>
// non-void return type

// function to calculate sum
int SUM(int a, int b)
{

ints1 = a + b;
returns 1;

}
// returns void// function to print

void print(int s2)
{

printf("The sum is %d", s2);
return;

}
int main()
{

int num1 = 10;
int num2 = 10;
int sum_of = SUM(num1, num2);
printf(sum_of);
return 0;

}

Output:
The sum is 20

Syntax:

switch(variable)
{
case 1:

//execute your code
break;

case n:

//execute your code
break;

default:
//execute your code

break;
}

The following rules apply to a switch statement −

 The expression used in a switch statement must have an integral or enumerated type, or be of a
class type in which the class has a single conversion function to an integral or enumerated type.

 You can have any number of case statements within a switch. Each case is followed by the value to
be compared to and a colon.

 The constant-expression for a case must be the same data type as the variable in the switch, and it
must be a constant or a literal.

 When the variable being switched on is equal to a case, the statements following that case will
execute until a break statement is reached.

 When a break statement is reached, the switch terminates, and the flow of control jumps to the
next line following the switch statement.

 Not every case needs to contain a break. If no break appears, the flow of control will fall
through to subsequent cases until a break is reached.

 A switch statement can have an optional default case, which must appear at the end of the switch.
The default case can be used for performing a task when none of the cases is true. No break is
needed in the default case.

Application of Switch Case:

The switch statement is convenient to be used if there are a large number of alternative paths. It is
particularly used in menu-driven programs. It is efficient and faster than if statement. But it can only be
used in case of equality (= =) operator but not with other relational operators and it cannot be used with
multiple variables.

Example program:
#include<stdio.h>
#include<conio.h>
void main()
{

int day;
printf("Enter the day of the week (1 to 7) :");
scanf("%d", &day);
switch(day)

{
case1 :printf("Today is SUNDAY");break;
case2 :printf("Today is MONDAY");break;
case3 :printf("Today is TUESDAY");break;
case4 :printf("Today is WEDNESDAY");break;
case5 :printf("Today is THURSDAY");break;
case6 :printf("Today is FRIDAY");break;
case7 :printf("Today is SATURDAY");break;
default:printf("Enter a valid choice(l to 7 only)");

}
getch();

}
OUTPUT:
Enter a valid choice(l to 7 only): 5
Today is THURSDAY

Loop Control Statements:

Looping Statements in C execute the sequence of statements or block of statementsmany times until
the stated condition becomes false. A loop in C consists of two parts, a body of a loop and a control
statement. The control statement is a combination of some conditions that direct the body of the loop
toexecute until the specified condition becomes false. The purpose of the C loop is to repeat the same code
a number of times.
Types of Loops in C:

Depending upon the position of a control statement in a program, looping statement in C is
classified into two types:

1. Entry controlled loop
2. Exit controlled loop

In an entry control loop, a condition is checked before executing the body of a loop. It is also

called as a pre-checking loop.
In an exit controlled loop, a condition is checked after executing the body of a loop. It is also

called as a post-checking loop.

The control conditions must be well defined and specified otherwise the loop will execute an

infinite number of times. The loop that does not stop executing and processes the statements number of
times is called as an infinite loop. An infinite loop is also called as an “Endless loop.” Following are some
characteristics of an infinite loop:
1. No termination condition is specified.
2. The specified conditions never meet.

The specified condition determines whether to execute the loop body or not.
‘C’ programming language provides us with three types of loop constructs:

1. The while loop
2. The do-while loop
3. The for loop

While Loop:In while loop, a condition is evaluated before processing a body of the loop. If a condition is
true then and only the body of a loop is executed.

Syntax:
while(condition)
{
//code to be executed
}

step1: The variable count is initialized with value 1 and then it has been tested for the condition.
step2: If the condition returns true then the statements inside the body of while loop are executed else
control comes out of the loop.
step3: The value of count is incremented using ++ operator then it has been tested again for the loop
condition.

Do-While Loop: In a do…while loop, the condition is always executed after the body of a loop. It is also
called an exit-controlled loop.

The do-while loop is mainly used in the case where we need to execute the loop at least once. The
do-while loop is mostly used in menu-driven programs where the termination condition depends upon the
end user.

Syntax:

do
{
//code to be executed
}while(condition);

#include<stdio.h>
int main()
{
int count=1;
while(count <=4)
{
printf("%d ", count);

count++;
}
return 0;
}

Output:

1234

Example:
#include<stdio.h>
int main()
{

int j=0;
do
{
printf("Value of variable j is: %d\n", j);

j++;
}while(j<=3);
return 0;

}
Output:
Value of variable j is:0
Value of variable j is:1
Value of variable j is:2
Value of variable j is:3

The do-while runs at least once even if the condition is false because the condition is evaluated, after the execution of
the body of loop.

For Loop:In a for loop, the initial value is performed only once, then the condition tests and compares the
counter to a fixed value after each iteration, stopping the for loop when false is returned.

This is one of the most frequently used loop in C programming.
Syntax of for loop:

for (initialization; condition test; increment or decrement)
{

//Statements to be executed repeatedly
}

Step 1: First initialization happens and the counter variable gets initialized.
Step 2: In the second step the condition is checked, where the counter variable is tested for the given
condition, if the condition returns true then the C statements inside the body of for loop gets executed, if
the condition returns false then the for loop gets terminated and the control comes out of the loop.
Step 3: After successful execution of statements inside the body of loop, the counter variable is
incremented or decremented, depending on the operation (++ or –).
Various forms of for loop in C
I am using variable num as the counter in all the following examples –
1) Here instead of num++, I’m using num=num+1 which is same as num++.
 for(num=10; num<20; num=num+1)
2) Initialization part can be skipped from loop as shown below, the counter variable is declared before the
loop.

Note: Even though we can skip initialization part but semicolon (;) before condition is must, without which
you will get compilation error.
3) Like initialization, you can also skip the increment part as we did below. In this case semicolon (;) is
must after condition logic. In this case the increment or decrement part is done inside the loop.

for(num=10; num<20;)
{
//Statements

Example:
#include<stdio.h>
int main()
{

int i;
for(i=1;i<=3;i++)
{
printf("%d\n",i);

}
return 0;

}
Output:
1
2
3

int num=10;
for(;num<20;num++)

4) This is also possible. The counter variable is initialized before the loop and incremented inside the loop.

5) As mentioned above, the counter variable can be decremented as well. In the below example the variable
gets decremented each time the loop runs until the condition num>10 returns false.

Introduction to functions in C:

A function is a group of statements that together perform a task. Every C program has at least one
function, which is main(), and all the most trivial programs can define additional functions.
You can divide up your code into separate functions. How you divide up your code among different
functions is up to you, but logically the division is such that each function performs a specific task.
A function declaration tells the compiler about a function's name, return type, and parameters. A
function definition provides the actual body of the function.
The C standard library provides numerous built-in functions that your program can call. For
example, strcat() to concatenate two strings, memcpy() to copy one memory location to another
location, and many more functions.
A function can also be referred as a method or a sub-routine or a procedure, etc.
Defining a Function
The general form of a function definition in C programming language is as follows −
return_typefunction_name(parameter list) {

body of the function
}
A function definition in C programming consists of a function header and a function body. Here are all the
parts of a function −

 Return Type − A function may return a value. The return_type is the data type of the value the
function returns. Some functions perform the desired operations without returning a value. In this
case, the return_type is the keyword void.

 Function Name − This is the actual name of the function. The function name and the parameter
list together constitute the function signature.

 Parameters − A parameter is like a placeholder. When a function is invoked, you pass a value to
the parameter. This value is referred to as actual parameter or argument. The parameter list refers
to the type, order, and number of the parameters of a function. Parameters are optional; that is, a
function may contain no parameters.

 Function Body − The function body contains a collection of statements that define what the
function does.

Example
Given below is the source code for a function called max(). This function takes two parameters num1 and
num2 and returns the maximum value between the two −
/* function returning the max between two numbers */

int max(int num1, int num2)
{

/* local variable declaration */
int result;
if (num1 > num2)

num++;
}

int num=10;
for(;num<20;)
{
//Statements

num++;
}

for(num=20; num>10; num--)

result = num1;
else

result = num2;
return result;

}
Function Declarations

A function declaration tells the compiler about a function name and how to call the function. The
actual body of the function can be defined separately.
A function declaration has the following parts −

return_typefunction_name(parameter list);
For the above defined function max(), the function declaration is as follows −

int max(int num1, int num2);
Parameter names are not important in function declaration only their type is required, so the following is
also a valid declaration −

int max(int, int);
Function declaration is required when you define a function in one source file and you call that function in
another file. In such case, you should declare the function at the top of the file calling the function.

Storage classes in C:

Storage classes in C are used to determine the lifetime, visibility, memory location, and initial value
of a variable. There are four types of storage classes in C.

A storage class in C is used to describe the following things:
 The variable scope.
 The location where the variable will be stored.
 The initialized value of a variable.
 A lifetime of a variable.
 Who can access a variable?

There are four types of storage classes in C
1) Automatic
2) External
3) Static
4) Register

Storage
Classes

Storage
Place

Default Value Scope Lifetime

auto RAM Garbage Value Local Within function

extern RAM Zero Global
Till the end of the main program Maybe declared
anywhere in the program

static RAM Zero Local
Till the end of the main program, Retains value
between multiple functions call

register Register Garbage Value Local Within the function

1) Automatic:
o Automatic variables are allocated memory automatically at runtime.auto keyword will be used.
o The visibility of the automatic variables is limited to the block in which they are defined.

The scope of the automatic variables is limited to the block in which they are defined.
o The automatic variables are initialized to garbage by default.
o The memory assigned to automatic variables gets freed upon exiting from the block.
o The keyword used for defining automatic variables is auto.
o Every local variable is automatic in C by default.

2) Static:
o The variables defined as static specifier can hold their value between the multiple function calls.
o Static local variables are visible only to the function or the block in which they are defined.
o A same static variable can be declared many times but can be assigned at only one time.
o Default initial value of the static integral variable is 0 otherwise null.
o The visibility of the static global variable is limited to the file in which it has declared.
o The keyword used to define static variable is static.

#include <stdio.h>
int main()
{

int a; //auto
char b;
float c;

printf("%d %c %f",a,b,c); // printing initial default value of automatic variables a, b, and c.
return 0;

}
. OUTPUT:

. garbage garbagegarbage

Example-1:
#include<stdio.h>
static char c;
static int i;
static float f;
static char s[100];
void main ()
{
printf("%d %d %f %s",c,i,f); // the initial default value of c, i, and f will be printed.
}
OUTPUT:
0 0 0.000000 (null)

Example-2:-
void test(); //Function declaration (discussed in next topic)main()
{

test();
test();
test();

}
void test()
{

staticinta=0; //Static variablea=a+1;
printf("%d\t",a);

}
output:

1 2 3

3) Register:
o The variables defined as the register is allocated the memory into the CPU registers depending

upon the size of the memory remaining in the CPU.
o We cannot dereference the register variables, i.e., we cannot use &operator for the register variable.
o The access time of the register variables is faster than the automatic variables.
o The initial default value of the register local variables is 0.
o The register keyword is used for the variable which should be stored in the CPU register. However,

it is compiler’s choice whether or not; the variables can be stored in the register.
o We can store pointers into the register, i.e., a register can store the address of a variable.
o Static variables cannot be stored into the register since we cannot use more than one storage

specifier for the same variable.

4) External:
o The external storage class is used to tell the compiler that the variable defined as extern is declared with

an external linkage elsewhere in the program.
o The variables declared as extern are not allocated any memory. It is only declaration and intended to

specify that the variable is declared elsewhere in the program.
o The default initial value of external integral type is 0 otherwise null.
o We can only initialize the extern variable globally, i.e., we can not initialize the external variable within

any block or method.
o An external variable can be declared many times but can be initialized at only once.
o If a variable is declared as external then the compiler searches for that variable to be initialized

somewhere in the program which may be extern or static. If it is not, then the compiler will show an
error.

Example 1
#include <stdio.h>
int main()
{
extern int a;
printf("%d",a);
}
Output
main.c:(.text+0x6): undefined reference to `a'

#include <stdio.h>
int main()
{ register int a; // variable a is allocated memory in the CPU register. The initial default value of a is 0.

printf("%d",a);
} OUTPUT:0

Example 2
#include <stdio.h>
int main()
{
register int a = 0;
printf("%u",&a); // This will give a compile time error since we can not access the address of a

//register variable.
}
Output:
main.c:5:5: error: address of register variable ?a? requested
printf("%u",&a);
^~~~~~

collect2: error: ld returned 1 exit status
Example 2
#include <stdio.h>
int a;
int main()
{
extern int a; // variable a is defined globally, the memory will not be allocated to a
printf("%d",a);
}
Output
0

Example 3
#include <stdio.h>
int a;
int main()
{
extern int a = 0; // this will show a compiler error since we can not use extern and initializer at same time
printf("%d",a);
}
Output
compile time error
main.c: In function ?main?:
main.c:5:16: error: ?a? has both ?extern? and initializer
extern int a = 0;
Example 4
#include <stdio.h>
int main()
{
extern int a; // Compiler will search here for a variable a defined and initialized somewhere in the pogram
or not.
printf("%d",a);
}
int a = 20;
Output
20

Arrays:
An array is defined as the collection of similar type of data items stored at contiguous memory

locations. Arrays are the derived data type in C programming language which can store the primitive type
of data such as int, char, double, float, etc.

It also has the capability to store the collection of derived data types, such as pointers, structure, etc.
The array is the simplest data structure where each data element can be randomly accessed by using its
index number.

C array is beneficial if you have to store similar elements. For example, if we want to store the
marks of a student in 6 subjects, then we don't need to define different variables for the marks in the
different subject. Instead of that, we can define an array which can store the marks in each subject at the
contiguous memory locations.

By using the array, we can access the elements easily. Only a few lines of code are required to
access the elements of the array.

Advantage of C Array
1) Code Optimization: Less code to the access the data.
2) Ease of traversing: By using the for loop, we can retrieve the elements of an array easily.
3) Ease of sorting: To sort the elements of the array, we need a few lines of code only.
4) Random Access: We can access any element randomly using the array.

Disadvantage of C Array
1) Fixed Size: Whatever size, we define at the time of declaration of the array, we can't exceed the
limit. So, it doesn't grow the size dynamically like LinkedList which we will learn later.

Different Types of Arrays:
1) One Dimensional Array.
2) Two Dimensional Arrays.
3) Multi Dimensional Arrays. (Two or Three etc..)

Declaration of C Array
We can declare an array in the c language in the following way.

Syntax: typearrayName[size];
This is called a one-dimensional array. An array type can be any valid C data types, and array size

must be an integer constant greater than zero.
Example:double amount[5];

Initialize an array:

Arrays can be initialized at declaration time:
int age[5]={22,25,30,32,35};

A pictorial representation of the Array:

Example Program:

Two multidimensional arrays

These are used in situations where a table of values have to be stored (or) in matrices applications.
Syntax

The syntax is given below −

datatype array_ name[row size] [column size];
For example: int a[5] [5];

a[0][0]
10

a[0][1]
20

a[0][2]
30

a[1][0]
40

a[1][1]
50

a[1][2]
60

a[2][0]
70

a[2][1]
80

a[2][2]
90

#include<stdio.h>
int main()
{

int a[5]={10,20,30,40,50};
int i;
printf("elements of the array are");
for(i=0;i<5;i++)

printf("%d", a[i]);
}

Output:
Elements of the array are
10 20 30 40 50

values together. The struct keyword is used to define a structure data type in a program. The struct data
type stores one or more than one data element of different kinds in a variable.

Suppose that if we want to store the data of employee in our C/C++ project, where we have to store
the following different parameters:

Id
Name
Department
Email Address
One way to store 4 different data by creating 4 different arrays for each parameter, such as id[],

name[], department[], and email[]. Using array id[i] represents the id of the ith employee. Similarly,
name[i] represents the name of ith employee (name). Array element department[i] and email[i] represent
the ith employee's department and email address.

Example:
struct employee
{

int id;
char name[50];
float salary;
char email[30];

};

Following is the C Program for compile time initialization −

Structure (struct):

Structure is a user-defined data type in a programming language that stores different data types'

Syntax of struct
struct [structure_name]

{
type member_1;
type member_2;
. . .
type member_n;

};

Let's see the another example to define a structure for an entity employee in c.
struct employee
{ int id;

char name[20];
float salary;

};
The following image shows the memory allocation of the structure employee that is defined in the above
example.

#include<stdio.h>
main()
{

int a[3][3]={10,20,30,40,50,60,70,80,90};
int i,j;
printf("Elements of the array are");
for(i=0;i<3;i++){

for(j=0;j<3;j++){
printf("%d \t", a[i][j]);

}
printf("\n");

}
}

OUTPUT:
Elements of the array are:
10 20 30
40 50 60
70 80 90

Here, struct is the keyword; employee is the name of the structure; id, name, and salary are the
members or fields of the structure. Let's understand it by the diagram given below:
Declaring structure variable:
We can declare a variable for the structure so that we can access the member of the structure easily. There
are two ways to declare structure variable:

1. By struct keyword within main() function
2. By declaring a variable at the time of defining the structure.

1st way:
Let's see the example to declare the structure variable by struct keyword. It should be declared within the
main function.

struct employee
{ int id;

char name[50];
float salary;

};
Now write given code inside the main() function.

struct employee e1, e2;
The variables e1 and e2 can be used to access the values stored in the structure. Here, e1 and e2 can be
treated in the same way as the objects in C++ and Java.

2nd way:
Let's see another way to declare variable at the time of defining the structure.

struct employee
{ int id;

char name[50];
float salary;

}e1,e2;
Which approach is good

If the number of variables are not fixed, use the 1st approach. It provides you the flexibility to
declare the structure variable many times.
If no. of variables are fixed, use 2nd approach. It saves your code to declare a variable in main() function.
Accessing members of the structure
There are two ways to access structure members:

1. By . (member or dot operator)
2. By -> (structure pointer operator)

Let's see the code to access the id member of p1 variable by. (member) operator.
p1.id

Let's see another example of the structure in C language to store many employees information.
1. #include<stdio.h>

2. #include <string.h>
3. struct employee
4. { int id;
5. char name[50];
6. float salary;
7. }e1,e2; //declaring e1 and e2 variables for structure
8. int main()
9. {
10. //store first employee information
11. e1.id=101;
12. strcpy(e1.name, "Sonoo Jaiswal");//copying string into char array
13. e1.salary=56000;
14.
15. //store second employee information
16. e2.id=102;
17. strcpy(e2.name, "James Bond");
18. e2.salary=126000;
19.
20. //printing first employee information
21. printf("employee 1 id : %d\n", e1.id);
22. printf("employee 1 name : %s\n", e1.name);
23. printf("employee 1 salary : %f\n", e1.salary);
24.
25. //printing second employee information
26. printf("employee 2 id : %d\n", e2.id);
27. printf("employee 2 name : %s\n", e2.name);
28. printf("employee 2 salary : %f\n", e2.salary);
29. return 0;
30. }

Union in C:
Union can be defined as a user-defined data type which is a collection of different variables of

different data types in the same memory location. The union can also be defined as many members, but
only one member can contain a value at a particular point in time.
Union is a user-defined data type, but unlike structures, they share the same memory location.
Syntax of declaring Union

union [name of union]
{

type member1;
type member2;
type member3;

};
Union is declared using the “union” keyword and name of union. Number 1, number 2, number 3

are individual members of union. The body part is terminated with a semicolon;.
Example of Union in C Programming

#include <stdio.h>
union item
{

int x;
float y;
char ch;

};

OUTPUT:
employee 1 id : 101
employee 1 name : Sonoo Jaiswal
employee 1 salary : 56000.000000
employee 2 id : 102
employee 2 name : James Bond
employee 2 salary : 126000.000000

int main()
{

union item it;
it.x = 12;
it.y = 20.2;

it.ch = 'a';
printf("%d\n", it.x);
printf("%f\n", it.y);
printf("%c\n", it.ch);

return 0;
}
Output:
1101109601
20.199892
a

In the above program, you can see that the values of x and y gets corrupted. Only variable ch prints
the expected result. It is because, in union, the memory location is shared among all member data types.

Therefore, the only data member whose value is currently stored, will occupy memory space. The
value of the variable ch was stored at last, so the value of the rest of the variables is lost.

What is Pointer in C?

The Pointer in C, is a variable that stores address of another variable. A pointer can also be used to
refer to another pointer function. A pointer can be incremented/decremented, i.e., to point to the next/
previous memory location. The purpose of pointer is to save memory space and achieve faster execution
time.
How to Use Pointers in C
If we declare a variable v of type int, v will actually store a value.

int v = 5;
v is equal to 5 now.

However, each variable, apart from value, also has its address (or, simply put, where it is located in
the memory). The address can be retrieved by putting an ampersand (&) before the variable name.

&v
If you print the address of a variable on the screen, it will look like a totally random number

(moreover, it can be different from run to run).

Now, what is a pointer? Instead of storing a value, a pointer will y store the address of a variable.
Pointer Variable:

syntax datatype *pointer_variablename =&variablename;
int *y = &v;

VARIABLE POINTER

A value stored in a named storage/memory address
A variable that points to the storage/memory
address of another variable

Declaring a Pointer
Like variables, pointers in C programming have to be declared before they can be used in your

program. Pointers can be named anything you want as long as they obey C’s naming rules. A pointer
declaration has the following form.

data_type *pointer_variable_name;

Example: int *ptr3;
A simple program for pointer illustration is given below:

#include <stdio.h>
int main()
{

int a=10; //variable declaration
int *p; //pointer variable declaration
p=&a; //store address of variable a in pointer p

printf("Address stored in a variable p is:%x\n",p); //accessing the address
printf("Value stored in a variable p is:%d\n",*p); //accessing the value

return 0;
}
Output:
Address stored in a variable p is:60ff08
Value stored in a variable p is:10

Extra Information:
Types of Pointers in C
Following are the different Types of Pointers in C:
Null Pointer
We can create a null pointer by assigning null value during the pointer declaration. This method is useful when
you do not have any address assigned to the pointer. A null pointer always contains value 0.
Following program illustrates the use of a null pointer:
#include <stdio.h>
int main()
{

int *p = NULL; //null pointer
printf(“The value inside variable p is:\n%x”,p);
return 0;

}
Output:
The value inside variable p is:
0
Void Pointer
In C programming, a void pointer is also called as a generic pointer. It does not have any standard data type. A
void pointer is created by using the keyword void. It can be used to store an address of any variable.
Following program illustrates the use of a void pointer:
#include <stdio.h>
int main()
{
void *p = NULL; //void pointer
printf("The size of pointer is:%d\n",sizeof(p));
return 0;
}
Output:
The size of pointer is:4
Wild pointer
A pointer is said to be a wild pointer if it is not being initialized to anything. These types of C pointers are not
efficient because they may point to some unknown memory location which may cause problems in our program
and it may lead to crashing of the program. One should always be careful while working with wild pointers.
Following program illustrates the use of wild pointer:

Following program illustrates the use of wild pointer:

#include <stdio.h>
int main()
{
int *p; //wild pointer
printf("\n%d",*p);
return 0;
}
Output:

timeout: the monitored command dumped core
sh: line 1: 95298 Segmentation fault timeout 10s main

Strings in C:
A String in C is nothing but a collection of characters in a linear sequence. The string can be defined as the
one-dimensional array of characters terminated by a null ('\0'). The character array or the string is used to
manipulate text such as word or sentences.
Each character in the array occupies one byte of memory, and the last character must always be 0. The
termination character ('\0') is important in a string since it is the only way to identify where the string ends.
When we define a string as char s[10], the character s[10] is implicitly initialized with the null in the
memory.
There are two ways to declare a string in c language.

1) By char array
2) By string literal

Let's see the example of declaring string by char array in C language.

char ch[10]={'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't', '\0'};
As we know, array index starts from 0, so it will be represented as in the figure given below.

While declaring string, size is not mandatory. So we can write the above code as given below:

char ch[]={'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't', '\0'};
We can also define the string by the string literal in C language. For example:

char ch[]="javatpoint";
In such case, '\0' will be appended at the end of the string by the compiler.

Difference between char array and string literal
There are two main differences between char array and literal.

1) We need to add the null character '\0' at the end of the array by ourself whereas, it is appended
internally by the compiler in the case of the character array.

2) The string literal cannot be reassigned to another set of characters whereas, we can reassign the
characters of the array.

String Example in C
Let's see a simple example where a string is declared and being printed. The '%s' is used as a format
specifier for the string in c language.

#include<stdio.h>
#include <string.h>
int main()
{

char ch[10]={'a', 's', 'h', 'o', 'k', 'a', '\0'};
char ch2[10]="ashoka";

printf("Char Array Value is: %s\n", ch);
printf("String Literal Value is: %s\n", ch2);
return 0;
}
Output
Char Array Value is: ashoka
String Literal Value is: ashoka

Command Line Arguments:
Command line means command prompt / command user interface. Arguments mean input

values.So at the time of execution passing the input values from the command prompt to the program is
called Command Line Arguments.

It is possible to pass some values from the command line to your C programs when they are
executed. These values are called command line arguments and many times they are important for your
program especially when you want to control your program from outside instead of hard coding those
values inside the code.

The command line arguments are handled using main() function arguments where argc refers to
the number of arguments passed, and argv[] is a pointer array which points to each argument passed to the
program. Following is a simple example:

End of the UNIT-1

#include<stdio.h>
intmain(intargc,char *argv[])
{printf(" \n Name of my Program %s \t",argv[0]);
if(argc==2)
{
printf("\n Value given by user is: %s \t",argv[1]);
}
elseif(argc>2)
{
printf("\n Many values given by users.\n");
}
else
{printf(" \n Single value expected.\n");
}
}

Output:
Name of the Program Example.c Hello
Value given by user is: Hello

Data Structures
(Course code: 21F00104, for MCA - Regulations: R21)

UNIT – II
Overview of Data Structures: The data structure name indicates itself that organizing the data
in memory in efficient manner. There are many ways of organizing the data in the memory as we have
already seen one of the data structures, i.e., array in C language. Array is a collection of memory
elements in which data is stored sequentially, i.e., one after another.

In other words, we can say that array stores the elements in a continuous manner. This
organization of data is done with the help of an array of data structures. There are also other ways to
organize the data in memory. Let's see the different types of data structures.

To structure the data in memory, 'n' number of algorithms were proposed, and all these

algorithms are known as Abstract data types. These abstract data types are the set of rules.
Types of Data Structures
There are two types of data structures:

 Primitive data structure
 Non-primitive data structure

Primitive Data structure:
The primitive data structures are primitive data types. The int, char, float, double, and pointer

are the primitive data structures that can hold a single value.
Non-Primitive Data structure:

The non-primitive data structure is divided into two types:
 Linear data structure
 Non-linear data structure

Linear Data Structure:
The arrangement of data in a sequential manner is known as a linear data structure. The data

structures used for this purpose are Arrays, Linked list, Stacks, and Queues. In these data structures,
one element is connected to only one another element in a linear form.
Non Linear Data Structure:

The arrangement of data in a non sequential manner is known as a non linear data structure.
When one element is connected to the 'n' number of elements known as a non-linear data structure.
The best example is trees and graphs. In this case, the elements are arranged in a random manner.

Data structures can also be classified as:
 Static data structure: It is a type of data structure where the size is allocated at the compile

time. Therefore, the maximum size is fixed.

algorithms that we can use in any programming language to structure the data in the memory.
The data structure is not any programming language like C, C++, java, etc. It is a set of

done from the one end known as the top of the stack.
Some key points related to stack

It is called as stack because it behaves like a real-world stack, piles of books, etc.
A Stack is an abstract data type with a pre-defined capacity, which means that it can store the
elements of a limited size.
It is a data structure that follows some order to insert and delete the elements, and that order can be
LIFO or FILO.

Typical view of a stack data structure:

PUSH POP
Item1
Item2
Item3
Item4

TOP i.e. PEEK element

First Item

 Dynamic data structure: It is a type of data structure where the size is allocated at the run
time. Therefore, the maximum size is flexible.

Major Operations we can perform using Data Structures are:
The major or the common operations that can be performed on the data structures are:

o Searching: We can search for any element in a data structure.
o Sorting: We can sort the elements of a data structure either in an ascending or descending

order.
o Insertion: We can also insert the new element in a data structure.
o Updation: We can also update the element, i.e., we can replace the element with another

element.
o Deletion: We can also perform the delete operation to remove the element from the data

structure.

Representation of a Stack
A Stack is a linear data structure that follows the LIFO (Last-In-First-Out) principle. Stack

has one end, (whereas the Queue has two ends (front and rear)). It contains only one pointer top
pointer pointing to the topmost element of the stack.

A stack is an ordered collection of homogeneous data elements where the insertion and
deletion operations take place at one end only.

Whenever an element is added in the stack, it is added on the top of the stack, and the element
can be deleted only from the stack.

In other words, a stack can be defined as a container in which insertion and deletion can be

Stack

Stack Related Terms:
 The insertion and deletions takes place at one position is called “TOP” of the stack.
 An element in the stack is termed as “ITEM”.
 Inserting an element into the stack is called “PUSH”.
 Deleting the element from the stack is called “POP”.
 Finding the TOP element in the stack is called “PEEK”.

A stack may be represented in the memory in various ways. There are two main ways:
using a one-dimensional array and
using a single linked list.

Array Representation of Stacks: First we have to allocate a memory block of sufficient size to
accommodate the full capacity of the stack. Then, starting from the first location of the memory block,
the
items of the stack can be stored in a sequential fashion.

In Figure, Item i denotes the ith item in the stack; l and u denote the index range of the array in use;
usually the values of these indices are 1 and SIZE respectively. TOP is a pointer to point the position
of the array up to which it is filled with the items of the stack. With this representation, the following
two ways can be stated:

Linked List Representation of Stacks :

Although array representation of stacks is very easy and convenient but it allows the
representation of only fixed sized stacks. In several applications, the size of the stack may vary during
program execution. An obvious solution to this problem is to represent a stack using a linked list.

A single linked list structure is sufficient to represent any stack. Here, the DATA field is for
the ITEM, and the LINK field is, as usual, to point to the next' item. Above Figure b depicts such a
stack using a single linked list.

In the linked list representation, the first node on the list is the current item that is the item at the
top of the stack and the last node is the node containing the bottom-most item. Thus, a PUSH operation
will add a new node in the front and a POP operation will remove a node from the front of the list.

Standard Stack Operations:
The following are some common operations implemented on the stack:

 push(): When we insert an element in a stack then the operation is known as a push. If the
stack is full then the overflow condition occurs.

 pop(): When we delete an element from the stack, the operation is known as a pop. If the stack
is empty means that no element exists in the stack, this state is known as an underflow state.

 isEmpty(): It determines whether the stack is empty or not.
 isFull(): It determines whether the stack is full or not.'
 peek(): It returns the element at the given position.
 count(): It returns the total number of elements available in a stack.
 change(): It changes the element at the given position.
 display(): It prints all the elements available in the stack.

PUSH operation
The steps involved in the PUSH operation are given below:

1) Before inserting an element in a stack, we check whether the stack is full or not.
2) If we try to insert the element in a stack, and the stack is full, then the overflow condition

occurs.
3) When we initialize a stack, we set the value of top as -1 to check that the stack is empty.

4) When the new element is pushed into a stack, first, the value of the top gets incremented,
i.e., top=top+1, and the element will be placed at the new position of the top.

5) The elements will be inserted until we reach the max size of the stack.

POP operation:
The steps involved in the POP operation are given below:

1) Before deleting the element from the stack, we check whether the stack is empty.
2) If we try to delete the element from the empty stack, then the underflow condition occurs.
3) If the stack is not empty, we first access the element which is pointed by the top
4) Once the pop operation is performed, the top is decremented by 1, i.e., top=top-1.

Algorithm for PUSH:
This procedure pushes an item into Stack.

PUSH (STACK, TOP, MAX_SIZE, ITEM)
step 1. IF TOP = =MAX_SIZE, THEN // test stack is full or not.

PIRNT “OVERFLOW”
RETURN

 ELSE

step 2. SET TOP = TOP + 1; // incrementing top or moving top
step 3. SET STACK [TOP] = ITEM; // placing item into stack at top
step 4. RETURN

Algorithm for POP:
This procedure pops an item from the Stack.
POP (STACK, TOP, ITEM)
step 1. IF TOP = = -1, THEN //testing stack is empty or not
 PRINT “UNDER FLOW” // if true stack is empty

step 2.

RETURN;
SET ITEM = STACK [TOP];

// deleteing element which is on top

step 3. SET TOP = TOP – 1; // next top must be decremented
step 4. RETURN;

Algorithm for PEEK:

This procedure find the element in the top position of stack.
PEEK (STACK, TOP, ITEM)

step 1. IF TOP = = -1, THEN //testing stack is empty or not
PRINT “UNDERFLOW” // printing stack is empty
RETURN;

ELSE
step 2. RETURN STACK [TOP] // element which is on top

Alogorithm for DISPLAY:

This procedure display the elements in the stack of array.
Display(STACK, TOP, i)

step 1. IF TOP = -1, THEN // testing stack is empty or not
PRINT “STACK IS EMPTY” //if true printing stack is empty.
RETURN;

step 2. ELSE
FOR (i= MAX_SIZE; i>-1; i- -) //if else printing all elements in the stack by

PRINT(STACK[i]); // by using for loop, decrementing i value.

Representation of Stack:
Stack data structure can be implementing in two ways. They are as follows...

1. Using Array
2. Using Linked List

When stack is implemented using array, that stack can organize only limited number of elements.
When stack is implemented using linked list, that stack can organize unlimited number of elements.

Stack Representation by Using Array:
A stack data structure can be implemented using one dimensional array. But stack

implemented using array, can store only fixed number of data values. This implementation is very
simple, just define a one dimensional array of specific size and insert(PUSH) or delete(POP) the
values into that array by using LIFO principle with the help of a variable 'Top'.

Initially Top is set to -1. Whenever we want to PUSH / insert a value into the stack, increment
the top value by one and then insert. Whenever we want to POP / delete a value from the stack, then
delete the top value and decrement the top value by one.

Operations on Stacks:
Basic operations to manipulate a stack are as follows:

1. Push : This operation is used to insert an element on to the stack.
2. Pop : This operation is used to delete an element from the stack.
3. Peek : This operation is used to find out the Top element of the stack.
4. Diplay : This operation is used to dipslay all the elements in the stack.

Algorithm for PUSH:
This procedure pushes an item into Stack.

PUSH (STACK, TOP, MAX_SIZE, ITEM)
step 5. IF TOP = =MAX_SIZE, THEN // test stack is full or not.

PIRNT “OVERFLOW”
RETURN

 ELSE

step 6. SET TOP = TOP + 1; // incrementing top or moving top
step 7. SET STACK [TOP] = ITEM; // placing item into stack at top
step 8. RETURN

Algorithm for POP:

This procedure pops an item from the Stack.
POP (STACK, TOP, ITEM)
step 5. IF TOP = = -1, THEN //testing stack is empty or not
 PRINT “UNDER FLOW” // if true stack is empty

step 6.

RETURN;
SET ITEM = STACK [TOP];

// deleteing element which is on top

step 7. SET TOP = TOP – 1; // next top must be decremented
step 8. RETURN;

Algorithm for PEEK:

This procedure finds the element in the top position of stack.
PEEK (STACK, TOP, ITEM)

step 3. IF TOP = = -1, THEN //testing stack is empty or not
PRINT “UNDERFLOW” // printing stack is empty
RETURN;

ELSE
step 4. RETURN STACK [TOP] // element which is on top

Alogorithm for DISPLAY:
This procedure displays the elements in the stack of array.

Display(STACK, TOP, i)
step 3. IF TOP = -1, THEN // testing stack is empty or not

PRINT “STACK IS EMPTY” //if true printing stack is empty.
RETURN;

step 4. ELSE
FOR (i= MAX_SIZE; i>-1; i- -) //if else printing all elements in the stack by

PRINT(STACK[i]); // by using for loop, decrementing i value.

Stack Representation by using Linked List:
The major problem with the stack implemented using array is, it works only for fixed number

of data values. That means the amount of data must be specified at the beginning of the
implementation itself. Stack implemented using array is not suitable, when we don't know the size of
data which we are going to use.

Definition:

A stack data structure can be implemented by using linked list data structure. The stack implemented using linked list can
work for unlimited number of values. That means stack implemented using linked list works for variable size of data. So,
there is no need to fix the size at the beginning of the implementation. The Stack implemented using linked list can
organize as many data values as we want.

In linked list implementation of a stack, every new element is inserted /pushed as 'top' element.
That means every newly inserted element is pointed by 'top'. Whenever we want to remove an element
from the stack, simply remove the node which is pointed by 'top' by moving 'top' to its next node in
the list. The next field of the first element must be always NULL.

Example

In above example, the last inserted node is 99 and the first inserted node is 25. The order of

elements inserted is 25, 32, 50 and 99.
Operations: Basic operations to manipulate a stack are as follows:

1. Push : This operation is used to insert an element in to the stack.
2. Pop : This operation is used to delete an element from the stack.
3. Peek : This operation is used to find out the Top element of the stack.
4. Diplay : This operation is used to display all the elements in the stack.

Stack Operations using Linked List
To implement a stack using a linked list, we need to set the following things before implementing actual
operations.

 Step 1 - Include all the header files which are used in the program. And declare all the user
defined functions.

 Step 2 - Define a 'Node' structure with two members data and next.
 Step 3 - Define a Node pointer 'top' and set it to NULL.
 Step 4 - Implement the main method by displaying Menu with list of operations and make suitable

function calls in the main method.

push(value) - Inserting an element into the Stack
We can use the following steps to insert a new node into the stack...

 Step 1 - Create a newNode with given value.
 Step 2 - Check whether stack is Empty (top == NULL)
 Step 3 - If it is Empty, then set newNode → next = NULL.
 Step 4 - If it is Not Empty, then set newNode → next = top.
 Step 5 - Finally, set top = newNode.

pop() - Deleting an Element from a Stack
We can use the following steps to delete a node from the stack...

 Step 1 - Check whether stack is Empty (top == NULL).
 Step 2 - If it is Empty, then display "Stack is Empty!!! Deletion is not possible!!!" and terminate

the function
 Step 3 - If it is Not Empty, then define a Node pointer 'temp' and set it to 'top'.
 Step 4 - Then set 'top = top → next'.
 Step 5 - Finally, delete 'temp'. (free(temp)).

display() - Displaying stack of elements
We can use the following steps to display the elements (nodes) of a stack...

 Step 1 - Check whether stack is Empty (top == NULL).
 Step 2 - If it is Empty, then display 'Stack is Empty!!!' and terminate the function.
 Step 3 - If it is Not Empty, then define a Node pointer 'temp' and initialize with top.
 Step 4 - Display 'temp → data --->' and move it to the next node. Repeat the same

until temp reaches to the first node in the stack. (temp → next != NULL).
 Step 5 - Finally! Display 'temp → data ---> NULL'.

Program: Note: Write a Program to implement the Stack operations using an Single Linked List? (Dont forget if required
you have to write example program if they asked for 12 marks. See the Lab Program)

Applications of STACK:
In our computers Both hardware and software stacks have been used to support four major

computing areas in computing requirements: here we will learn two major applications.
1) A classical application of stack is “Evaluation of Arithmetic Expression”.

Here compiler uses a stack to translate input arithmetic expression into their corresponding
Object code.

Operator Operand1 Operand2

2) Another important application of stack is during the execution of “Recursive Program”. It
uses run time stacks for storing recursive functions.

What is an Expression?

In any programming language, if we want to perform any calculation or to frame a condition
etc., we use a set of symbols to perform the task. These set of symbols makes an expression.
An expression can be defined as follows...

An expression is a collection of operators and operands that represents a specific value.
In above definition, Operator is a symbol which performs a particular task like arithmetic operation
or logical operation or conditional operation etc.,

Operands are the values on which the operators can perform the task. Here operand can be a
direct value or variable or address of memory location.
Expression Types
Based on the operator position, expressions are divided into THREE types. They are as follows...

1. Infix Expression
2. Prefix Expression
3. Postfix Expression

1) Infix Expression: (or Infix Notation)

In infix expression, operator is used in between operands.

The general structure of an Infix expression is as follows...

Example

2) Prefix Expression: (or Polish Notation)

In prefix expression, operator is used before operands. We can say that "Operands follows the
Operator".

The general structure of Prefix expression is as follows...

Next page….

Example

3) Postfix Expression: (or Reverse Polish Notation or Sufix Notation)

In postfix expression, operator is used after operands. We can say that "Operator follows the
Operands".
The general structure of Postfix expression is as follows...

Example

Any expression can be represented using the above three different types of expressions. And
we can convert an expression from one form to another form like Infix to Postfix, Infix to Prefix,
Prefix to Postfix and vice versa.

Evaluation of arithmetic expression in a computer took two-step process.

Operand1 Operand2 Operator

Operand1 Operator Operand2

1. First convert the infix to postfix expression.
2. Then evaluate the postfix expression by using STACK.

.
Infix to Postfix Conversion using STACK Data Structure:

To convert Infix Expression into Postfix Expression using a stack data structure, We can use the
following steps...

Let ‘Q’ be an arithmetic expression written in “INFIX notation”. ‘Q’ contains operands, operators
(Like +, -, *, / etc) and left & right paranthesis.

Here a stack follows the operator precedency & associations of an operators. For example as
below.

 () 1st highest precedence (left to right associativity).
 * / 2nd Precedence
 + - 3rd Precedence

Algorithm to convert the Infix expression into Postfix expression:
Read /scan the given infix expression from left side to right side, observe the scanned character.
1) If the character is LEFT Parenthesis, then PUSH it into the STACK.
2) If the character is an OPERAND, then ADD it to the POSTFIX Expression.
3) If the character is an OPERATOR, then check whether STACK is Empty or not.

a) If the STACK is empty, then PUSH operator into the STACK.
b) If the STACK is not empty, then check the priority of the operator.

i) If the priority of the operator > operator present at TOP of the STACK, then PUSH
operator into STACK.

ii) If the priority of operator <= operator present at TOP of the STACK, then POP the
operator from the STACK and ADD it to the POSTFIX expression and go to step i)

4) If the character is RIGHT Parenthesis, then POP all the operators from the STACK until it reaches
LEFT Parenthesis and ADD to the POSTFIX expression.

5) After reading the all characters in INFIX, if STACK is not empty then POP all and ADD to
POSTFIX.

Example1: The given Infix expression is: A+B*C

Finally we get POSTFIX expression ABC*+
Like this we can convert the INFIX to POSTFIX expression by using STACK. This process will be
done by the computer also.

Example2: Given expression is: A + B * (C – D) need to convert into POSTFIX
By using above algorithm steps we will get POSTFIX notation as below.

See the table in next page.

INFIX POSTFIX STACK
A A (
A+ A +
A+B AB +

A+B*C A+B*C

POSTFIX POSTFIX
STACK STACK

+ A A

A+B*C

+ AB
 POSTFIX

STACK

A+B* AB +*
A+B*(AB +*(
A+B*(C ABC +*(
A+B*(C- ABC +*(-
A+B*(C-D ABCD +*(-
A+B*(C-D) ABCD- +*(

 ABCD-* +
 ABCD-*+ POSTFIX expression

Evaluation of POSTFIX Expression:

After converting from Infix expression to Postfix expression. We can easily evaluate the
Postfix expression by using STACK.
ALGORITHM:
Item Read from POSTFIX expression Action

IF OPERAND encountered

IF OPERATOR encountered

OUTPUT

PUSH it onto the stack

POP the two OPERANDS from the stack and
apply the OPERATOR to them. Then PUSH the
result into stack.

POP the result from the stack after completion of
Postfix expression.

Example:

With the previous POSTFIX expression ABCD-*+
Let consider simple values like A = 1, B = 2, C = 3, D = 4

ABCD-*+ or 1234 -*+

Example for Infix to Postfix:
Consider the following Infix Expression... (A + B) * (C - D)
The given infix expression can be converted into postfix expression using Stack data Structure as
follows...

Character scanned from
POSTFIX expression.

OPERATION STACK

1 1
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4
- 3 - 4 1, 2, -1
* 2 * - 1 1, -2
+ 1 + (-2) -1

Rough work:
To solve manually:
A+B*(C-D)
1+2*(3-4)
1+2*(-1)
1+(-2)
1-2
-1 is the result

In next page

The final Postfix Expression is... A B + C D - *
Another application of STACK
RECURSION:

A function that calls itself is called a recursive function and this technique is called
recursion. A recursive function will call itself until a final call that does not require a call to
itself is made.
Example: Finding factorial of a number.

n! = n x (n-1) x (n-2) x - - - - - - 3 x 2 x 1
n! = n x (n –1)!

ALGORITHM:
FACTORIAL(N)

step 1. IF (N = = 0) THEN
RETURN 1;

step 2. ELSE
Fact = N x FACTORIAL (N – 1)

step 3. END IF
step 4. RETURN (Fact)
step 5. STOP

To implement the above, we require two stacks.
1. One for storing the parameter N and
2. Another to hold the return address.

Example:
FACTORIAL(3)

OUTPUT:
Enter the number: 5
Factorial of 5 = 120

#include <stdio.h>
int Fact(int);
int main()
{
int num, val;
//read a number from the user
printf("Enter the number: ");
scanf("%d", &num);
//call fact function
val = Fact(num);
//print result
printf("Factorial of %d = %d", num, val);

return 0;
}
//function to calculate factorial
int Fact(int n)
{
if (n == 1)

return 1;
else

return (n * Fact(n-1));
}

Result returns 1

So 1 x 2 = 2 Result returns 2

So 2 x 3 = 6 final results is 6

Implementation of a Stack:
Stack is a linear data structure. Which follows Last In First Out principle. We can implement

the stack by using C program. Here we can implement in two ways.
1) Using Arrays 2) Using Linked List.

Implementation of Stack Using Array in C:
The C Program is written for implementation of STACK using Array, the basic operations of

stack are PUSH() and POP().
PUSH function in the code is used to insert an element to the top of stack, POP function used

to remove the element from the top of stack. The display function in the code is used to print the
values. All stack functions are implemented in C Code.

C Program for STACK Using Arrays:
#include<stdio.h>
int stack[100],choice,n,top,x,i;
void push(void);
void pop(void);
void display(void);
int main()
{

//clrscr();
top=-1;
printf("\n Enter the size of STACK[MAX=100]:");
scanf("%d",&n);
printf("\n\t STACK OPERATIONS USING ARRAY");
printf("\n\t ");
printf("\n\t 1.PUSH\n\t 2.POP\n\t 3.DISPLAY\n\t 4.EXIT");
do
{

printf("\n Enter the Choice:");
scanf("%d",&choice);
switch(choice)
{

case 1:
{

push();
break;

}
case 2:
{

pop();
break;

}
case 3:
{

display();
break;

}
case 4:
{

printf("\n\t EXIT POINT ");
break;

}
default:
{

printf ("\n\t Please Enter a Valid Choice(1/2/3/4)");

}
}

}
while(choice!=4);
return 0;

}
void push()
{

if(top>=n-1)
{

printf("\n\tSTACK is over flow");
}
else
{

printf(" Enter a value to be pushed:");
scanf("%d",&x);
top++;
stack[top]=x;

}
}
void pop()
{

if(top<=-1)
{

printf("\n\t Stack is under flow");
}
else
{

printf("\n\t The popped elements is
%d",stack[top]);

top--;
}

}
void display()
{

if(top>=0)
{

printf("\n The elements in STACK \n");
for(i=top; i>=0; i--)

printf("\n%d",stack[i]);
printf("\n Press Next Choice");

}
else
{

printf("\n The STACK is empty");
}

}

C Program to Implement the STACK Operations Using Linked List:
The same implementation of stack using c is written using pointers:

#include<stdio.h>
#include<conio.h>
struct Node

OUTPUT:
Enter the size of STACK[MAX=100]:10

STACK OPERATIONS USING ARRAY

1. PUSH
2. POP
3. DISPLAY
4. EXIT

Enter the Choice:1
Enter a value to be pushed:12

Enter the Choice:1
Enter a value to be pushed:24

Enter the Choice:1
Enter a value to be pushed:98

Enter the Choice:3

The elements in STACK

98
24
12
Press Next Choice
Enter the Choice:2

The popped elements is 98
Enter the Choice:3

The elements in STACK

24
12
Press Next Choice
Enter the Choice:4

EXIT POINT

{
int data;
struct Node *next;

}*top = NULL;
void push(int);
void pop();
void display();
void main()
{

int choice, value;
clrscr();
printf("\n:: Stack using Linked List ::\n");
while(1){

printf("\n****** MENU ******\n");
printf("1. Push\n2. Pop\n3. Display\n4. Exit\n");
printf("Enter your choice: ");
scanf("%d",&choice);
switch(choice){

case 1: printf("Enter the value to be insert: ");
scanf("%d", &value);
push(value);
break;

case 2: pop(); break;
case 3: display(); break;
case 4: exit(0);
default: printf("\nWrong selection!!!

Please try again!!!\n");
}

}
}
void push(int value)
{

struct Node *newNode;
newNode = (struct Node*)malloc(sizeof(struct

Node));
newNode->data = value;
if(top == NULL)

newNode->next = NULL;
else

newNode->next = top;
top = newNode;
printf("\nInsertion is Success!!!\n");

}
void pop()
{

if(top == NULL)
printf("\nStack is Empty!!!\n");

else{
struct Node *temp = top;
printf("\nDeleted element: %d", temp->data);
top = temp->next;
free(temp);

}
}
void display()

OUTPUT:

:: Stack using Linked List ::
******** MENU ********

1. Push
2. Pop
3. Display
4. Exit
Enter your choice: 1
Enter the value to be insert: 20
Insertion is Success!!!

******** MENU ********
1. Push
2. Pop
3. Display
4. Exit
Enter your choice: 1
Enter the value to be insert: 30
Insertion is Success!!!

******** MENU ********
1. Push
2. Pop
3. Display
4. Exit
Enter your choice: 1
Enter the value to be insert: 40
Insertion is Success!!!

******** MENU ********
1. Push
2. Pop
3. Display
4. Exit
Enter your choice: 3
40--->30--->20--->NULL

******** MENU ********
1. Push

{
if(top == NULL)

printf("\nStack is Empty!!!\n");
else{

struct Node *temp = top;
while(temp->next != NULL){

printf("%d--->",temp->data);
temp = temp -> next;

}
printf("%d--->NULL",temp->data);

}
}

Queues:
Queue data structure is a linear data structure in which the operations are performed based on

FIFO principle.
Queue is a linear data structure in which the insertion and deletion operations are performed at

two different ends. Means in a queue data structure, adding and removing elements are performed at
two different positions. The insertion is performed at one end and deletion is performed at another end.

In queue data structure, the insertion and deletion operations are performed based on FIFO
(First In First Out) principle.

Various Positions of Queue:

When we see the positions of queue, we found them as below.
Front: The deletion operation is performed at a position which is known as 'front'
Rear: The insertion operation is performed at a position which is called as ‘rear’.

Example:
Inserting 25, 30, 51, 60 and 85 into QUEUE.
Inserting 25 into queue…

front

Inserting 30 into queue…

front
Similarly Inserting 51, 60 and 85 into queue…

front rear

Representation of Queue:

Queue data structure can be represented in two ways. They are as follows...
1. Queue Representing by Using Array
2. Queue Representing by Using Linked List

Queue

rear

25

rear

30 25

25 30 51 60 85

When a queue is implemented using an array, that queue can organize an only limited
number of elements.

When a queue is implemented using a linked list, that queue can organize an unlimited
number of elements.

1) Queue Representing by Using Array:
We can easily represent queue by using linear arrays. There are two variables i.e. front and

rear, that are implemented in the case of every queue. Front and rear variables point to the position
from where insertions and deletions are performed in a queue.

Initially, the value of front and queue is -1 which represents an empty queue. Array
representation of a queue containing 5 elements along with the respective values of front and rear, is
shown in the following figure.

front Queue rear
at 0 at 4

After inserting an element into the queue shown in the above figure, the queue will look
something like following. The value of rear will become 5 while the value of front remains same.

front Queue rear
at 0 at 5
Queue after inserting the new element

After deleting an element, the value of front will increase from -1 to 0. However, the queue

will look something like following. Deleting the element will be done only at front.

front Queue rear
at 1 at 5
Queue after deleting the element

Different operations in the Queue:
In the queue concept we can perform the following operations:

1) Insertion,
2) Deletion,
3) Searching Operations.

Insertion and deletion operations will be termed as follows.
The following operations are performed on a queue data structure...

1. enQueue(value) - To insert an element into the queue
2. deQueue() - To delete an element from the queue

display() - To display the elements of the queue
1) Insertion operation: (enqueue operation)
Algorithm to insert any element in a queue:
Check if the queue is already full by comparing rear to max - 1. If so, then return an overflow error.

If the item is to be inserted as the first element in the list, in that case set the index value of
front and rear to 0 and insert the element at the rear end.

Otherwise keep increasing the index value of rear and insert each element one by one having
rear as the index.
Algorithm

o Step 1: IF REAR = = MAX - 1
Write OVERFLOW
Go to stop
[END OF IF]

o Step 2: IF FRONT = -1 and REAR = -1
SET FRONT = REAR = 0

ELSE
SET REAR = REAR + 1
[END OF IF]

o Step 3: Set QUEUE[REAR] = NUM
o Step 4: EXIT

2) Deletion operation: (dequeue operation)
Algorithm to Deleting the element from the queue:

If, the index value of front is -1 or value of front is greater than rear , write an underflow
message and exit.

Otherwise, keep increasing the index value of front and return the item stored at the front end
of the queue at each time.
Algorithm

o Step 1: IF FRONT = = -1 or FRONT > REAR
Write UNDERFLOW

ELSE
SET VAL = QUEUE[FRONT]
SET FRONT = FRONT + 1

[END OF IF]
o Step 2: EXIT

3) Searching operation in queue:
Algorithm to search the element in the queue:

If, the index value of front is -1 or value of front is greater than rear , write an underflow
message and exit.

Otherwise, compare the key element value from front to rear by incrementing the front index
value, until it founds.

Algorithm

o Step 1: IF FRONT = = -1 or FRONT > REAR
Write UNDERFLOW

ELSE
SET INDEX = FRONT

Step 2: IF KEY = = QUEUE[INDEX]
PRINT Element found at Index value

ELSE
INDEX = INDEX+1
REPEAT STEP 2
STOP

ELSE
SET FRONT = FRONT + 1

REPEAT THE COMPARISION UNTIL FRONT = = REAR
[END OF IF]

Step 2: EXIT

Queue Using Linked List
The major problem with the queue implemented using an array is, it will work for an only

fixed number of data values. That means, the amount of data must be specified at the beginning itself.
Queue using an array is not suitable when we don't know the size of data which we are going to use.

A queue data structure can be implemented using a linked list data structure. The queue which
is implemented using a linked list can work for an unlimited number of values. That means, queue
using linked list can work for the variable size of data (No need to fix the size at the beginning of the
implementation).

The Queue implemented using linked list can organize as many data values as we want.

In linked list implementation of a queue, the last inserted node is always pointed by 'rear' and
the first node is always pointed by 'front'.

Example

In above example, the last inserted node is 50 and it is pointed by 'rear' and the first inserted node is
10 and it is pointed by 'front'. The order of elements inserted is 10, 15, 22 and 50.
Operations
To implement queue using linked list, we need to set the following things before implementing actual
operations.

 Step 1 - Include all the header files which are used in the program. And declare all the user defined
functions.

 Step 2 - Define a 'Node' structure with two members data and next.
 Step 3 - Define two Node pointers 'front' and 'rear' and set both to NULL.
 Step 4 - Implement the main method by displaying Menu of list of operations and make suitable function

calls in the main method to perform user selected operation.

enQueue(value) - Inserting an element into the Queue
We can use the following steps to insert a new node into the queue...

 Step 1 - Create a newNode with given value and set 'newNode → next' to NULL.
 Step 2 - Check whether queue is Empty (rear == NULL)
 Step 3 - If it is Empty then, set front = newNode and rear = newNode.
 Step 4 - If it is Not Empty then, set rear → next = newNode and rear = newNode.

deQueue() - Deleting an Element from Queue
We can use the following steps to delete a node from the queue...

 Step 1 - Check whether queue is Empty (front == NULL).
 Step 2 - If it is Empty, then display "Queue is Empty!!! Deletion is not possible!!!" and terminate from

the function
 Step 3 - If it is Not Empty then, define a Node pointer 'temp' and set it to 'front'.
 Step 4 - Then set 'front = front → next' and delete 'temp' (free(temp)).

display() - Displaying the elements of Queue
We can use the following steps to display the elements (nodes) of a queue...

 Step 1 - Check whether queue is Empty (front == NULL).
 Step 2 - If it is Empty then, display 'Queue is Empty!!!' and terminate the function.
 Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with front.
 Step 4 - Display 'temp → data --->' and move it to the next node. Repeat the same until 'temp' reaches to

'rear' (temp → next != NULL).
 Step 5 - Finally! Display 'temp → data ---> NULL'.

C program to implement queue using array:
1. #include<stdio.h>
2. #include<stdlib.h>
3. #define maxsize 5
4. void insert();
5. void delete();
6. void display();
7. int front = -1, rear = -1;
8. int queue[maxsize];
9. void main()
10. {
11. int choice;
12. while(choice != 4)
13. {
14. printf("\n*************************Main Menu*****************************\n");
15. printf("\n==

===\n");
16. printf("\n1.insert an element\n2.Delete an element\n3.Display the queue\n4.Exit\n");
17. printf("\nEnter your choice ?");
18. scanf("%d",&choice);
19. switch(choice)
20. {
21. case 1:
22. insert();
23. break;
24. case 2:
25. delete();
26. break;
27. case 3:
28. display();
29. break;
30. case 4:
31. exit(0);
32. break;
33. default:
34. printf("\nEnter valid choice??\n");
35. }
36. }
37. }
38. void insert()

39. {
40. int item;
41. printf("\nEnter the element\n");
42. scanf("\n%d",&item);
43. if(rear == maxsize-1)
44. {
45. printf("\nOVERFLOW\n");
46. return;
47. }
48. if(front == -1 && rear == -1)
49. {
50. front = 0;
51. rear = 0;
52. }
53. else
54. {
55. rear = rear+1;
56. }
57. queue[rear] = item;
58. printf("\nValue inserted ");
59.
60. }
61. void delete()
62. {
63. int item;
64. if (front == -1 || front > rear)
65. {
66. printf("\nUNDERFLOW\n");
67. return;
68.

69. }

70. else
71. {
72. item = queue[front];
73. if(front == rear)
74. {
75. front = -1;
76. rear = -1 ;
77. }
78. else
79. {
80. front = front + 1;
81. }
82. printf("\nvalue deleted ");
83. }
84.
85.
86. }
87.
88. void display()
89. {
90. int i;
91. if(rear == -1)
92. {
93. printf("\nEmpty queue\n");

OUTPUT:

94. }
95. else
96. { printf("\nprinting values\n");
97. for(i=front;i<=rear;i++)
98. {
99. printf("\n%d\n",queue[i]);
100. }
101. }

102. }

*************Main Menu**************
==
1. insert an element
2. Delete an element
3. Display the queue
4. Exit

Enter your choice ?1
Enter the element
123
Value inserted
*************Main Menu**************
==
1. insert an element
2. Delete an element
3. Display the queue
4. Exit
Enter your choice ?1
Enter the element
90
Value inserted
*************Main Menu**************
===================================
1. insert an element
2. Delete an element
3. Display the queue
4. Exit
Enter your choice ?2
value deleted
*************Main Menu**************
==
1. insert an element
2. Delete an element
3. Display the queue
4. Exit
Enter your choice ?3
printing values
90
*************Main Menu**************
==
1. insert an element

#include<stdio.h>
#include<conio.h>
struct Node
{

int data;
struct Node *next;

}*front = NULL,*rear = NULL;

void insert(int);
void delete();
void display();

void main()
{

int choice, value;
clrscr();
printf("\n:: Queue Implementation using Linked List ::\n");
while(1){

printf("\n****** MENU ******\n");
printf("1. Insert\n2. Delete\n3. Display\n4. Exit\n");
printf("Enter your choice: ");
scanf("%d",&choice);
switch(choice){

case 1: printf("Enter the value to be insert: ");
scanf("%d", &value);
insert(value);
break;

case 2: delete(); break;
case 3: display(); break;
case 4: exit(0);
default: printf("\nWrong selection!!! Please try again!!!\n");

}
}

}
void insert(int value)
{

struct Node *newNode;
newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = value;
newNode -> next = NULL;
if(front == NULL)

front = rear = newNode;
else{

rear -> next = newNode;
rear = newNode;

}
printf("\nInsertion is Success!!!\n");

}
void delete()
{

if(front == NULL)
printf("\nQueue is Empty!!!\n");

else{
struct Node *temp = front;
front = front -> next;

printf("\nDeleted element: %d\n", temp->data);
free(temp);

}
}
void display()
{

if(front == NULL)
printf("\nQueue is Empty!!!\n");

else{
struct Node *temp = front;
while(temp->next != NULL){

printf("%d--->",temp->data);
temp = temp -> next;

}
printf("%d--->NULL\n",temp->data);

}
}

Tower of Hanoi:
Tower of Hanoi is a mathematical puzzle where we have three rods (pegs) and n disks. The
objective of the puzzle is to move the entire stack to another rod, obeying the following simple
rules:
1. Only one disk can be moved at a time.
2. Each move consists of taking the upper disk from one of the stacks and placing it on top of

another stack i.e. a disk can only be moved if it is the uppermost disk on a stack.
3. No disk may be placed on top of a smaller disk.

Procedure / Approach :
Take an example for 2 disks :

Let rod 1 = 'A', rod 2 = 'B', rod 3 = 'C'.
Step 1 : Shift first disk from 'A' to 'B'.
Step 2 : Shift second disk from 'A' to 'C'.
Step 3 : Shift first disk from 'B' to 'C'.
The pattern here is :
Shift 'n-1' disks from 'A' to 'B'.
Shift last disk from 'A' to 'C'.
Shift 'n-1' disks from 'B' to 'C'.

OUTPUT:
*********** MENU **********
1. Insert
2. Delete
3. Display
4. Exit
Enter your choice: 1
Enter the value to be insert: 8
Insertion is Success!!!

*********** MENU **********
1. Insert
2. Delete
3. Display
4. Exit
Enter your choice: 1
Enter the value to be insert: 12
Insertion is Success!!!

*********** MENU **********
1. Insert
2. Delete
3. Display
4. Exit
Enter your choice: 1
Enter the value to be insert: 6
Insertion is Success!!!
*********** MENU **********
1. Insert
2. Delete
3. Display
4. Exit
Enter your choice: 3
8--->12--->6--->NULL

Image illustration for 3 disks:

Examples:

Input : 2
Output : Disk 1 moved from A to B

Disk 2 moved from A to C
Disk 1 moved from B to C

Input : 3
Output : Disk 1 moved from A to C

Disk 2 moved from A to B
Disk 1 moved from C to B
Disk 3 moved from A to C
Disk 1 moved from B to A
Disk 2 moved from B to C
Disk 1 moved from A to C

Towers of Hanoi program in ‘C’:
This C Program uses recursive function & solves the tower of hanoi. The tower of hanoi is a
mathematical puzzle. It consists of threerods, and a number of disks of different sizes which can
slideonto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one
rod, the smallest at the top. We have to obtain the same stack on the third rod.
Here is the source code of the C program for solving towers of hanoi. The C Program is successfully
compiled and run on a Linux system. The program output is also shown below.

/*
* C program for Tower of Hanoi using Recursion
*/
#include <stdio.h>

void towers(int, char, char, char);

7.
8. int main()
9. {
10.
11.
12.
13.
14.

int num;

printf("Enter the number of disks : ");
scanf("%d", &num);
printf("The sequence of moves involved in the Tower of Hanoi are :\n");

You prepare any of one of the program (another program given in next page)

Another program for Towers of Hanoi:
#include<stdio.h>

void TOH(int n,char x,char y,char z)

{

if(n>0) {

TOH(n-1,x,z,y);

printf("\n%c to %c",x,y);

TOH(n-1,z,y,x);

}

}

int main() {

int n=3;

TOH(n,'A','B','C');

}

END OF THE UNIT-2

15. towers(num, 'A', 'C', 'B');
16. return 0;
17. }
18. void towers(int num, char frompeg, char topeg, char auxpeg)
19. {
20. if (num == 1)
21. {
22. printf("\n Move disk 1 from peg %c to peg %c", frompeg, topeg);
23. return;
24. }
25. towers(num - 1, frompeg, auxpeg, topeg);
26. printf("\n Move disk %d from peg %c to peg %c", num, frompeg, topeg);
27. towers(num - 1, auxpeg, topeg, frompeg);
28. }

Output

A to B

A to C

B to C

A to B

C to A

C to B

A to B

OUTPUT:
Enter the number of disks: 3
The sequence of moves involved in the Tower of Hanoi are:

Move disk 1 from peg A to peg C
Move disk 2 from peg A to peg B
Move disk 1 from peg C to peg B
Move disk 3 from peg A to peg C
Move disk 1 from peg B to peg A
Move disk 2 from peg B to peg C
Move disk 1 from peg A to peg C

// A linked list node
struct Node
{

int data;
struct Node* next;

};

Data Structures
(Course code: 21F00104, for MCA - Regulations: R21)

UNIT – III
Topics: Linked Lists–Pointers, Singly Linked List, Dynamically Linked Stacks and Queues,
Polynomials Using Singly Linked Lists, Using Circularly Linked Lists, Insertion, Deletion and
Searching Operations, Doubly linked lists and its operations, Circular linked lists and its operations.

Linked Lists:
Like arrays, Linked List is a linear data structure. Unlike arrays, linked list elements are not stored at a
contiguous location; the elements are linked using pointers.

Why Linked List?

Arrays can be used to store linear data of similar types, but arrays have the following
limitations.
1) The size of the arrays is fixed: So we must know the upper limit on the number of elements in
advance. Also, generally, the allocated memory is equal to the upper limit irrespective of the usage.
2) Inserting a new element in an array of elements is expensive because the room has to be created for
the new elements and to create room existing elements have to be shifted but in Linked list if we have
the head node then we can traverse to any node through it and insert new node at the required position.

For example, in a system, if we maintain a sorted list of IDs in an array id[].
id[] = [1000, 1010, 1050, 2000, 2040].

And if we want to insert a new ID 1005, then to maintain the sorted order, we have to move all
the elements after 1000 (excluding 1000).

Deletion is also expensive with arrays until unless some special techniques are used. For
example, to delete 1010 in id[], everything after 1010 has to be moved due to this so much work is
being done which affects the efficiency of the code.
Advantages over arrays: (advantages of linked list)

1) Dynamic size: Linked List will allow to increase the size whenever required and as well as
decrease the size when not required at run time.

2) Ease of insertion/deletion: Linked List will allow insertion and deletion whenever we
required.
Drawbacks in Linked List:
1) Random access is not allowed. We have to access elements sequentially starting from the first node
(head node). So we cannot do binary search with linked lists efficiently with its default
implementation.
2) Extra memory space for a pointer is required with each element of the list.
3) Not cache friendly. Since array elements are contiguous locations, there is locality of reference
which is not there in case of linked lists.
Linked List Representation:
A linked list is represented by a pointer to the first node of the linked list. The first node is called the
head. If the linked list is empty, then the value of the head points to NULL.
Each node in a list consists of at least two parts:
1) data (we can store integer, strings or any type of data).
2) Pointer (Or Reference) to the next node (connects one node to another)

In C, we can represent a node using structures. Below is an example of a linked list node with
integer data.

Linked Lists–Pointers:
A linked list is a list constructed using pointers. A linked list is not fixed in size but can grow

and shrink while your program is running. Here we will learn how to define and manipulate linked
lists, which will serve to introduce you to a new way of using pointers.

Nodes A structure like the one shown in below diagram: it consists of items that we have
drawn as boxes connected by arrows. The boxes are called nodes and the arrows represent pointers.
Each of the nodes in the following diagram contains an integer, and a pointer that can point to other
nodes of the same type. Note that pointers point to the entire node, not to the individual items (such as
10 or "rolls") that are inside the node.

Node

A node is a collection of two sub-elements or parts. A data part that stores the element and a
next part that stores the link to the next node.

A linked list is formed when many such nodes are linked together to form a chain. Each node
points to the next node present in the order. The first node is always used as a reference to traverse the
list and is called HEAD. The last node points to NULL.

Declaring a Linked list:

In C language, a linked list can be implemented using structure and pointers.

 OR

The above definition is used to create every node in the list. The data field stores the element

and the next is a pointer to store the address of the next node.
Here in place of a data type, struct LinkedList / struct node is written before next. That's

because it’s a self-referencing pointer. It means a pointer that points to whatever it is a part of.
Here next is a part of a node and it will point to the next node.

Types of Linked List:

Linked List is a linear data structure. Unlike arrays, linked list elements are not stored at a
contiguous location; the elements are linked using pointers.

There are different types of Linked List. They are as follows:
1) Singly linked list
2) Doubly linked list
3) Circular linked list
4) Doubly Circular linked list.

1) Singly linked list: Singly linked list is the most common used linked list. When we say Linked list it
means we are studying singly linked list. In singly linked list each node consist of two parts, one is
Data part and another one is Address part. Data part contains value, and address part contains
address of next node. Address part also called pointer part.

struct LinkedList
{

int data;
struct LinkedList *next;

};

struct node
{
int data;
struct node *next;

};

Head

3 100

head
(but not head node)

100

Head node

200

300

Here in singly linked list head will point the head node address. Head will not a head node,
because head will not hold any data. First node which contains data part and address part will call it as
head node.

Suppose first node contains value: 3, second node contains value:7, like third node value 9.
Then first node address part / next contains the address of the second node i.e., 200. Second node next
hold the address of the next node i.e., 300. As there is no 4 th node here, third node next (last node next)
will hold NULL. At the beginning head will be there without data part. This head hold only address of
the first node / head node.

Here in this list we have only single link between each node, so that we are calling it as
singly linked list. Here in singly linked list forward traversal only possible, backward direction or
reverse traversal is not possible.

We can represent this singly linked list node with the following code.

2) Doubly linked list:
A doubly linked list is another type of the linked list . As name suggest doubly linked list

means, a list which contains double links. Here a node contains three parts Data part, Next part and
Previous part.

Therefore, we can say that list has two references, i.e., forward and backward reference to
traverse in either direction.

 Data part holds the value,
 Next part holds the address of next node using pointer.
 Previous part holds the address of previous node.

prev Data next

Node

Even in double linked list the head will store the address of first node. As per above diagram
head pointer stored the address of first node i.e., 1000.

Here in doubly linked list forward and backward traversals both possible with the help of
next and previous address parts.

NULL 9 300 7 200

struct node
{

int data;
struct node *next;

};

We can represent this doubly linked list node with the following code.

3) Circular linked list:

A circular linked list is another type of the linked list . In this circular linked list it contains
single links. Here a node contains TWO parts Data part, Next part. It is almost similar to doubly
linked list, but last node next part will point or hold the address of first node. First node previous part
holds the address of last node. So that it will look like circular form. This type will be called doubly
circular linked list.

Therefore, we can say that list has only one reference, i.e., forward reference to traverse in
forward direction only.

 Data part holds the value,
 Next part holds the address of next node using pointer.
 Last node address part or next part hold the address of first node.

Even while representing the code for circular linked list, there is no mojor difference with
singly linked list. Only here in circular linked list the last node next part we need to store the first node
address.

4) Doubly Circular linked list:

lastNode->next = firstnode;

A doubly circular linked list is another type of the linked list . In this doubly circular linked
list it contains double links. Here a node contains THREE parts Data part, Next part and Previous
part. It is almost similar to double linked list, but here last node next part will point or hold the
address of first node. And first node previous part will hold the address of the last node. So that it
will look like circular form. This type will be called circular linked list.

Here in doubly circular linked list, it contains TWO references, i.e., forward reference to
traverse in forward direction and backward reference to traverse in backward direction. So here
bidirectional traversing is possible.

Circular Linked List
Here first node data part will hold the value 10, first node next part hold the address of next

node like 1004 stored. Like this it will continue up to last node. When come to last node, next part
will point or store the address of first node. So that a circular like reference / link will create. This is
called circular linked list. Here head will point the first node address like single linked list. Only the
difference with single list is: in single linked list last node next part will hold NULL because no
next node.

We can represent this singly linked list node with the following code.

struct node
{

int data;
struct node *next;
struct node *prev;

};

struct node
{

int data;
struct node *next;

};

 Data part holds the value,
 Next part holds the address of next node using pointer.
 Previous part holds the address of previous node using pointer.
 Last node address part or next part hold the address of first node.

Doubly Circular Linked List
Here first node data part will hold the value 10, first node next part hold the address of next

node like 200 stored. Like this it will continue up to last node. When come to last node, next part
will point or store the address of first node. Similarly first node previous part will store the address
of last node. So that double circular will be creating. This is called doubly circular linked list.

We can represent this doubly circular linked list node with the following code. It is similar
to doubly linked list node structure.

Even while representing the code for doubly circular linked list, there is no major difference
with doubly linked list. Only here in doubly circular linked list the last node next part will store the
first node address and first node previous address part will store the address of last node.

last->next = firstnode;
first->prev=lastnode;

Differences between the singly-linked list and doubly linked list:
 Definition
The singly-linked is a linear data structure that consists of a collection of nodes in which one
node consists of two parts, i.e., one is the data part, and another one is the address part. In
contrast, a doubly-linked list is also a linear data structure in which the node consists of three
parts, i.e., one is the data part, and the other two are the address parts.

 Direction
As we know that in a singly linked list , a node contains the address of the next node, so the
elements can be traversed in only one direction, i.e., forward direction. In contrast, in a doubly-
linked list, the node contains two pointers (previous pointer and next pointer) that hold
the address of the next node and the address of the previous node, respectively so
elements can be traversed in both directions.

 Memory space
The singly linked list occupies less memory space as it contains a single address. We know
that the pointer variable stores the address, and the pointer variable occupies 4 bytes; therefore,
the memory space occupied by the pointer variable in the singly linked list is also 4 bytes. The
doubly linked list holds two addresses in a node, one is of the next node and the other one is of
the previous node; therefore, the space occupied by the two pointer variables is 8 bytes.

 Insertion and Deletion
The insertion and deletion in a singly-linked list are less complex than a doubly linked list. If we
insert an element in a singly linked list then we need to update the address of only next node. On
the other hand, in the doubly linked list, we need to update the address of both the next and the
previous node.

struct node
{

int data;
struct node *next;
struct node *prev;

};

Let’s look at the differences in a tabular form.

Basis of
comparison

Singly linked list

Doubly linked list

Definition

A single linked list is a list of
nodes in which node has two
parts, the first part is the data
part, and the next part is the
pointer pointing to the next
node in the sequence of nodes.

A doubly linked list is also a collection of nodes
in which node has three fields, the first field is the
pointer containing the address of the previous
node, the second is the data field, and the third is
the pointer containing the address of the next
node.

Access

The singly linked list can be
traversed only in the forward
direction.

The doubly linked list can be accessed in both
directions.

List pointer
It requires only one list pointer
variable, i.e., the head pointer
pointing to the first node.

It requires two list pointer
variables, head and last . The head pointer points
to the first node, and the last pointer points to the
last node of the list.

Memory space It utilizes less memory space. It utilizes more memory space.

Efficiency
It is less efficient as compared
to a doubly-linked list.

It is more efficient.

Implementation
It can be implemented on the
stack.

It can be implemented on stack, heap and binary
tree.

Complexity

In a singly linked list, the time
complexity for inserting and
deleting an element from the
list is O(n) .

In a doubly-linked list, the time complexity for
inserting and deleting an element is O(1) .

Dynamically Linked Stacks:

Dynamic Stack, is a stack data structure whose the length or capacity (maximum number of
elements that can be stored) increases or decreases in real time based on the operations (like insertion
or deletion) performed on it.

Stack is one of the most popular used data structures which have multiple applications in real
life. So we must be familiar with its structure and implementation, so that we can use stack in our
program with ease.

When we are working on stack with arrays, already we know arrays are fixed size. Arrays will
not support dynamic memory allocation. Up to fixed size only we can insert the elements, beyond that
overflow will be occurred in arrays. To overcome this drawback i.e., to make stack dynamic we
implement stack using linked list and such stack is known as dynamic stack and in this section we are
going to learn dynamic stack.

Dynamic linked stack:
1) It will be done at run time.
2) The size of the data structure is not fixed.
3) Size can be modified during the operations performed on it. Means it can be shrink or grown

whenever need.
4) More flexible.
5) Here it allocates the memory dynamically.
6) In stacks there is no overflow, because any number of elements we can add or insert into the

stack dynamically.
7) But here underflow may be occurred, because if there is no single node in the stack but user

trying to access will give underflow.
We can perform the following operations on the stack using linked list:

PUSH/insertion, POP/deletion operations we can perform. When we are performing
push operation the memory will be allocated dynamically with the help of malloc() function.

PUSH / Insertion in singly linked list at beginning:
Pushing / Inserting a new element into a singly linked list at beginning is quite simple. We just

need to make a few adjustments in the node links. There are the following steps which need to be
followed in order to inser a new node in the list at beginning.

 Allocate the space for the new node and store data into the data part of the node. This will be
done by the following statements.

ptr = (struct node *) malloc(sizeof(struct node *));
ptr → data = item

 Make the link part of the new node pointing to the existing first node of the list. This will be
done by using the following statement.

ptr->next = head;
 At the last, we need to make the new node as the first node of the list this will be done by using

the following statement.
head = ptr;

Time Complexity: o(n)

After performing pop operation the stack will be shrink dynamically.

Dynamically Linked Queues:
Queue is a linear data structure which follows the First in, First out principle (FIFO). Queue

supports operations like enqueue and dequeue. It can be implemented using array and linked list. The
benefit of implementing queue using linked list over arrays is that it allows to grow the queue as per
the requirements, i.e., memory can be allocated dynamically.

A good example of a queue is a queue of customers purchasing a train ticket, where the
customer who comes first will be served first.

A queue data structure can be implemented using a linked list data structure. The queue which
is implemented using a linked list can work for an unlimited number of values. That means, queue
using linked list can work for the variable size of data (No need to fix the size at the beginning of the
implementation).

The Queue implemented using linked list can organize as many data values we want. At run
time we can add any number of elements into the queue at rear. So that queue may be grown. Even
when we are deleting the elements or nodes from the queue then automatically queue may be shrink

POP operation /Deleting a node from the stack:

Deleting a node from the top of stack is referred to as pop operation. Deleting a node from the
linked list implementation of stack is different from that in the array implementation. In order to pop
an element from the stack, we need to follow the following steps:
1. Check for the underflow condition: The underflow condition occurs when we try to pop from

an already empty stack. The stack will be empty if the head pointer of the list points to null.
2. Adjust the head pointer accordingly: In stack, the elements are popped only from one end,

therefore, the value stored in the head pointer must be deleted and the node must be freed. The
next node of the head node now becomes the head node.

dynamically.
The storage requirement of linked representation of a queue with n elements is o(n) while the

time requirement for operations is o(1).
In a linked queue, each node of the queue consists of two parts i.e. data part and the link part.

Each element of the queue points to its immediate next element in the memory.
In the linked queue, there are two pointers maintained in the memory i.e. front pointer and rear

pointer. The front pointer contains the address of the starting element of the queue while the rear
pointer contains the address of the last element of the queue.

In linked list implementation of a queue, the last inserted node is always pointed by 'rear' and
the first node is always pointed by 'front'.

Example: A linked queue is shown here:

In above example, the last inserted node is 50 and it is pointed by 'rear' and the first inserted

node is 10 and it is pointed by 'front'. The order of elements inserted is 10, 15, 22 and 50.
Operations on Linked Queues:
Each node of a linked queue consists of two fields: data and next (storing address of next node). The
data field of each node contains the assigned value and the next points to the node containing the next
item in the queue.
A linked queue consists of two pointers i.e. front pointer and rear pointer. The front pointer stores the
address of the first element of the queue and the rear pointer stores the address of the last element of
the queue.
Insertion is performed at the rear end whereas deletion is performed at the front end of the queue. If
front and rear both points to NULL, it signifies that the queue is empty.
The two main operations performed on linked queue are:

 Insertion / enqueue
 Deletion dequeue

Insertion (enqueue)
Insert operation or insertion on a linked queue adds an element to the end of queue. The new element
which is added becomes the last element of the queue.
Algorithm to perform Insertion on a linked queue:

1. Create a new node pointer.
ptr = (struct node *) malloc (sizeof(struct node));

2. Now, two conditions arises, i.e, either the queue is empty or queue contains at least one
element.

3. If queue is empty, then the new node added will be both front and rear, and the next pointer of
front and rear will point to NULL.

*ptr->data = val;

if (front == NULL) {
front = ptr;
rear = ptr;
front -> next = NULL;
rear -> next = NULL;

}
4. If queue contains at least one element, then the condition front == NULL becomes false. So,

make the next pointer of rear point to new node ptr and point rear pointer to the newly created
node ptr

rear -> next = ptr;
rear = ptr;

Hence, a new node(element) is added to the queue.

Polynomials Using Singly Linked Lists
Polynomials and Sparse Matrix are two important applications of arrays and linked lists. A

polynomial is composed of different terms where each of them holds a coefficient and an exponent.
Here we will learn the polynomials using linked list.
Polynomial means:

A polynomial p(x) is the expression in variable x which is in the form (axn + bxn-1 + …. + jx+ k) ,
where a, b, c …., k fall in the category of real numbers and 'n' is non negative integer, which is called
the degree of polynomial.

An essential characteristic of the polynomial is that each term in the polynomial expression
consists of two parts:

 one is the coefficient
 other is the exponent

Example:

10x2 + 26x, here 10 and 26 are coefficients and 2, 1 is its exponential value.

Points to keep in Mind while working with Polynomials:
 The sign of each coefficient and exponent is stored within the coefficient and the exponent itself
 Additional terms having equal exponent is possible one
 The storage allocation for each term in the polynomial must be done in ascending and descending

order of their exponent

Deletion: (dequeue)
Deletion or delete operation on a linked queue removes the element which was first inserted in the
queue, i.e., always the first element of the queue is removed.
Steps to perform Deletion on a linked queue:

1. Check if the queue is empty or not.
2. If the queue is empty, i.e, front==NULL, so we just print 'underflow' on the screen and exit.
3. If the queue is not empty, delete the element at which the front pointer is pointing. For deleting

a node, copy the node which is pointed by the front pointer into the pointer ptr and make the
front pointer point to the front's next node and free the node pointed by the node ptr. This can
be done using the following statement:

*ptr = front;
front = front -> next;
free(ptr);

Representation of Polynomial:

Polynomial can be represented in the various ways. These are:
 By the use of arrays
 By the use of Linked List

Polynomial representation using Linked List :
The linked list can be used to represent a polynomial of any degree. Simply the information

field is changed according to the number of variables used in the polynomial. If a single variable is
used in the polynomial the information field of the node contains two parts: one for coefficient of
variable and the other for power / exponent of variable. Let us consider an example to represent a
polynomial using linked list as follows:

Polynomial: 4x3-6x2+10x+6
Linked List:

In the above linked list, the external pointer ‘ROOT’ point to the first node of the linked list.
The first node of the linked list contains the information about the variable with the highest
degree/power. The first node points to the next node with next lowest degree /power of the variable.

Representation of a polynomial using the linked list is beneficial when the operations on the
polynomial like addition and subtractions are performed. The resulting polynomial can also be
traversed very easily to display the polynomial.
Algorithm for Polynomial Addition using Linkedlist :

 Step 1: loop around all values of linked list and follow step 2 & 3.
 Step 2: if the value of a node’s exponent is greater copy this node to result node and head

towards the next node.
 Step 3: if the values of both node’s exponent is same add the coefficients and then copy the

added value with node to the result.
 Step 4: Print the resultant node.

Another Example to represent polynomial as well as adding two polynomials:
P(x) = 15x10+3x5+10 P(x)+P(q) = 15x10 + 10x8 + 19x5 + 5x2 +10
P(q) = 10x8+16x5+5x2

Results

5

5

5 5 19 2 15 10

10 8

10 0 NULL

10 0 NULL

5 2 NULL

3 10 15

16 8 10

Polynomials Using Circularly Linked Lists:
Polynomial means:

A polynomial p(x) is the expression in variable x which is in the form (axn + bxn-1 + …. + jx+ k) ,
where a, b, c …., k fall in the category of real numbers and 'n' is non negative integer, which is called
the degree of polynomial.

An essential characteristic of the polynomial is that each term in the polynomial expression
consists of two parts:

 one is the coefficient
 other is the exponent

Example:
10x2 + 26x, here 10 and 26 are coefficients and 2, 1 is its exponential value.

Given two polynomial numbers represented by a circular linked list, the task is to add these two
polynomials by adding the coefficients of the powers of the same variable.
Note: In given polynomials, the term containing the higher power of x will come first.
Examples:

Input:
1st Number = 5x^2 * y^1 + 4x^1 * y^2 + 3x^1 * y^1 + 2x^1
2nd Number = 3x^1 * y^2 + 4x^1
Output:
5x^2 * y^1 + 7x^1 * y^2 + 3x^1 * y^1 + 6x^1

Explanation:
The coefficient of x^2 * y^1 in 1st numbers is 5 and 0 in the 2nd number. Therefore, sum of the
coefficient of x^2 * Y^1 is 5.
The coefficient of x^1 * y^2 in 1st numbers is 4 and 3 in the 2nd number. Therefore, sum of the
coefficient of x^1 * Y^2 is 7.
The coefficient of x^1 * y^1 in 1st numbers is 3 and 0 in the 2nd number. Therefore, sum of the
coefficient of x^1 * Y^1 is 2.
The coefficient of x^1 * Y^0 in 1st numbers is 2 and 4 in the 2nd number. Therefore, sum of the
coefficient of x^1 * Y^0 is 6.
Input:
1st Number = 3x^3 * y^2 + 2x^2 + 5x^1 * y^1 + 9y^1 + 2
2nd Number = 4x^3 * y^3 + 2x^3 * y^2 + 1y^2 + 3
Output:
4x^3 * y^3 + 5x^3 * y^2 + 2x^2 + 5x^1 * y^1 + 1y^2 + 9y^1 + 5
Approach: Follow the below steps to solve the problem:
1. Create two circular linked lists, where each node will consist of the coefficient, power of x,

power of y and pointer to the next node.
2. Traverse both the polynomials and check the following conditions:

 If power of x of 1st polynomial is greater than power of x of second polynomial then store
node of first polynomial in resultant polynomial and increase counter of polynomial 1.

 If power of x of 1st polynomial is less than power of x of second polynomial then store the
node of second polynomial in resultant polynomial and increase counter of polynomial 2.

 If power of x of 1st polynomial is equal to power of x of second polynomial and power
of y of 1st polynomial is greater than power of y of 2nd polynomial then store the node of
first polynomial in resultant polynomial and increase counter of polynomial 1.

 If power of x of 1st polynomial is equal to power of x of second polynomial and power
of y of 1st polynomial is equal to power of y of 2nd polynomial then store the sum of
coefficient of both polynomial in resultant polynomial and increase counter of both
polynomial 1 and polynomial 2.

3. If there are nodes left to be traversed in 1st polynomial or in 2nd polynomial then append them
in resultant polynomial.

4. Finally, print the resultant polynomial.

Circular Linked List and its operations:
Circular Linked List:
In single linked list, every node points to its next node in the sequence and the last node points NULL.
But in circular linked list, every node points to its next node in the sequence but the last node points to
the first node in the list.

That means circular linked list is similar to the single linked list except that the last node points to the
first node in the list
Example

Operations on Circular Linked List:
In a circular linked list, we perform the following operations...

1. Insertion
2. Deletion
3. Display

Before we implement actual operations, first we need to setup empty list. First perform the following
steps before implementing actual operations.

 Step 1 - Include all the header files which are used in the program.
 Step 2 - Declare all the user defined functions.
 Step 3 - Define a Node structure with two members data and next
 Step 4 - Define a Node pointer 'head' and set it to NULL.
 Step 5 - Implement the main method by displaying operations menu and make suitable

function calls in the main method to perform user selected operation.
Insertion
In a circular linked list, the insertion operation can be performed in three ways. They are as follows...

1. Inserting At Beginning of the list
2. Inserting At End of the list
3. Inserting At Specific location in the list

Inserting At Beginning of the list
We can use the following steps to insert a new node at beginning of the circular linked list...

 Step 1 - Create a newNode with given value.
 Step 2 - Check whether list is Empty (head = = NULL)
 Step 3 - If it is Empty then, set head = newNode and newNode→next = head .
 Step 4 - If it is Not Empty then, define a Node pointer 'temp' and initialize with 'head'.
 Step 5 - Keep moving the 'temp' to its next node until it reaches to the last node (until 'temp

→ next = = head').
 Step 6 - Set 'newNode → next =head', 'head = newNode' and 'temp → next = head'.

Inserting At End of the list
We can use the following steps to insert a new node at end of the circular linked list...

 Step 1 - Create a newNode with given value.

A circular linked list is a sequence of elements in which every element has a link to its next
element in the sequence and the last element has a link to the first element.

 Step 2 - Check whether list is Empty (head = = NULL).
 Step 3 - If it is Empty then, set head = newNode and newNode → next = head.
 Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.
 Step 5 - Keep moving the temp to its next node until it reaches to the last node in the list

(until temp → next = = head).
 Step 6 - Set temp → next = newNode and newNode → next = head.

Inserting At Specific location in the list (After a Node)
We can use the following steps to insert a new node after a node in the circular linked list...

 Step 1 - Create a newNode with given value.
 Step 2 - Check whether list is Empty (head = = NULL)
 Step 3 - If it is Empty then, set head = newNode and newNode → next = head.
 Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.
 Step 5 - Keep moving the temp to its next node until it reaches to the node after which we

want to insert the newNode (until temp1 → data is equal to location, here location is the node
value after which we want to insert the newNode).

 Step 6 - Every time check whether temp is reached to the last node or not. If it is reached to
last node then display 'Given node is not found in the list!!! Insertion not possible!!!' and
terminate the function. Otherwise move the temp to next node.

 Step 7 - If temp is reached to the exact node after which we want to insert the newNode then
check whether it is last node (temp → next == head).

 Step 8 - If temp is last node then set temp → next = newNode and newNode → next = head.
 Step 8 - If temp is not last node then set newNode → next = temp → next and temp →

next = newNode.

Deletion
In a circular linked list, the deletion operation can be performed in three ways those are as follows...

1. Deleting from Beginning of the list
2. Deleting from End of the list

3. Deleting a Specific Node
Deleting from Beginning of the list
We can use the following steps to delete a node from beginning of the circular linked list...

 Step 1 - Check whether list is Empty (head = = NULL)
 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate

the function.
 Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and initialize

both 'temp1' and 'temp2' with head.
 Step 4 - Check whether list is having only one node (temp1 → next == head)
 Step 5 - If it is TRUE then set head = NULL and delete temp1 (Setting Empty list

conditions)
 Step 6 - If it is FALSE move the temp1 until it reaches to the last node. (until temp1 →

next = = head)
 Step 7 - Then set head = temp2 → next, temp1 → next = head and delete temp2.

Deleting from End of the list
We can use the following steps to delete a node from end of the circular linked list...

 Step 1 - Check whether list is Empty (head == NULL)
 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate

the function.
 Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and initialize

'temp1' with head.
 Step 4 - Check whether list has only one Node (temp1 → next == head)
 Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate from the

function. (Setting Empty list condition)
 Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next node. Repeat

the same until temp1 reaches to the last node in the list. (until temp1 → next == head)
 Step 7 - Set temp2 → next = head and delete temp1.

Deleting Last node from Circular Linked List
Deleting a Specific Node from the list
We can use the following steps to delete a specific node from the circular linked list...

 Step 1 - Check whether list is Empty (head == NULL)
 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate

the function.
 Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and initialize

'temp1' with head.
 Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted or to the last

node. And every time set 'temp2 = temp1' before moving the 'temp1' to its next node.
 Step 5 - If it is reached to the last node then display 'Given node not found in the list!

Deletion not possible!!!'. And terminate the function.
 Step 6 - If it is reached to the exact node which we want to delete, then check whether list is

having only one node (temp1 → next == head)
 Step 7 - If list has only one node and that is the node to be deleted then set head = NULL and

delete temp1 (free(temp1)).
 Step 8 - If list contains multiple nodes then check whether temp1 is the first node in the list

(temp1 == head).
 Step 9 - If temp1 is the first node then set temp2 = head and keep moving temp2 to its next

node until temp2 reaches to the last node. Then set head = head → next, temp2 → next
= head and delete temp1.

 Step 10 - If temp1 is not first node then check whether it is last node in the list (temp1 → next
== head).

 Step 1 1- If temp1 is last node then set temp2 → next = head and
delete temp1 (free(temp1)).

 Step 12 - If temp1 is not first node and not last node then set temp2 → next = temp1 →
next and delete temp1 (free(temp1)).

After deleting the node which contains 22

Searching in the Linked List:
To search any value in the linked list, we can traverse the linked list and compares the value present
in the node.
bool searchLL(Node head, int val)
{
 Node temp = head // creating a temp variable pointing to the head of the linked list
 while(temp != NULL) // traversing the list
 {
 if(temp.data == val)
 return true
 temp = temp.next
 }

}
Displaying a circular Linked List
We can use the following steps to display the elements of a circular linked list...

 Step 1 - Check whether list is Empty (head == NULL)
 Step 2 - If it is Empty, then display 'List is Empty!!!' and terminate the function.
 Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head.
 Step 4 - Keep displaying temp → data with an arrow (--->) until temp reaches to the last node
 Step 5 - Finally display temp → data with arrow pointing to head → data.

Here, 'link1' field is used to store the address of the previous node in the sequence, 'link2' field is
used to store the address of the next node in the sequence and 'data' field is used to store the actual
value of that node.
Example

Important Points to be Remembered
1) In double linked list, the first node must be always pointed by head.
2) Always the previous field of the first node must be NULL.
3) Always the next field of the last node must be NULL.

return false

In a single linked list, every node has a link to its next node in the sequence. So, we can traverse from
one node to another node only in one direction and we cannot traverse back. We can solve this kind of
problem by using a double linked list. A double linked list can be defined as follows...

Double linked list is a sequence of elements in which every element has links to its previous
element and next element in the sequence.

Doubly Linked List:

In a double linked list, every node has a link to its previous node and next node. So, we can
traverse forward by using the next field and can traverse backward by using the previous field. Every
node in a double linked list contains three fields and they are shown in the following figure...

Operations on Doubly Linked List
In a double linked list, we perform the following operations...

1. Insertion
2. Deletion
3. Display

Insertion
In a double linked list, the insertion operation can be performed in three ways as follows...

1. Inserting At Beginning of the list
2. Inserting At End of the list
3. Inserting At Specific location in the list

Inserting At Beginning of the list
We can use the following steps to insert a new node at beginning of the double linked list...

 Step 1 - Create a newNode with given value and newNode → previous as NULL.
 Step 2 - Check whether list is Empty (head = = NULL)
 Step 3 - If it is Empty then, assign NULL to newNode → next and newNode to head.
 Step 4 - If it is not Empty then, assign head to newNode → next and newNode to head.

Inserting At End of the list
We can use the following steps to insert a new node at end of the double linked list...

 Step 1 - Create a newNode with given value and newNode → next as NULL.
 Step 2 - Check whether list is Empty (head = = NULL)
 Step 3 - If it is Empty, then assign NULL to newNode → previous and newNode to head.
 Step 4 - If it is not Empty, then, define a node pointer temp and initialize with head.
 Step 5 - Keep moving the temp to its next node until it reaches to the last node in the list

(until temp → next is equal to NULL).
 Step 6 - Assign newNode to temp → next and temp to newNode → previous.

Inserting At Specific location in the list (After a Node)
We can use the following steps to insert a new node after a node in the double linked list...

 Step 1 - Create a newNode with given value.
 Step 2 - Check whether list is Empty (head = = NULL)
 Step 3 - If it is Empty then, assign NULL to both newNode → previous & newNode →

next and set newNode to head.
 Step 4 - If it is not Empty then, define two node pointers temp1 & temp2 and

initialize temp1 with head.
 Step 5 - Keep moving the temp1 to its next node until it reaches to the node after which we

want to insert the newNode (until temp1 → data is equal to location, here location is the node
value after which we want to insert the newNode).

 Step 6 - Every time check whether temp1 is reached to the last node. If it is reached to the last
node then display 'Given node is not found in the list!!! Insertion not possible!!!' and
terminate the function. Otherwise move the temp1 to next node.

 Step 7 - Assign temp1 → next to temp2, newNode to temp1 → next, temp1 to newNode →
previous, temp2 to newNode → next and newNode to temp2 → previous.

Deletion
In a double linked list, the deletion operation can be performed in three ways as follows...

1. Deleting from Beginning of the list
2. Deleting from End of the list
3. Deleting a Specific Node

Deleting from Beginning of the list
We can use the following steps to delete a node from beginning of the double linked list...

 Step 1 - Check whether list is Empty (head = = NULL)
 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate

the function.
 Step 3 - If it is not Empty then, define a Node pointer 'temp' and initialize with head.
 Step 4 - Check whether list is having only one node (temp → previous is equal to temp →

next)
 Step 5 - If it is TRUE, then set head to NULL and delete temp (Setting Empty list

conditions)
 Step 6 - If it is FALSE, then assign temp → next to head, NULL to head → previous and

delete temp.

Deleting from End of the list
We can use the following steps to delete a node from end of the double linked list...

 Step 1 - Check whether list is Empty (head = = NULL)
 Step 2 - If it is Empty, then display 'List is Empty!!! Deletion is not possible' and terminate

the function.
 Step 3 - If it is not Empty then, define a Node pointer 'temp' and initialize with head.
 Step 4 - Check whether list has only one Node (temp → previous and temp → next both

are NULL)
 Step 5 - If it is TRUE, then assign NULL to head and delete temp. And terminate from the

function. (Setting Empty list condition)
 Step 6 - If it is FALSE, then keep moving temp until it reaches to the last node in the list.

(until temp → next is equal to NULL)
 Step 7 - Assign NULL to temp → previous → next and delete temp.

Deleting a Specific Node from the list
We can use the following steps to delete a specific node from the double linked list...

 Step 1 - Check whether list is Empty (head == NULL)
 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate

the function.
 Step 3 - If it is not Empty, then define a Node pointer 'temp' and initialize with head.
 Step 4 - Keep moving the temp until it reaches to the exact node to be deleted or to the last

node.
 Step 5 - If it is reached to the last node, then display 'Given node not found in the list!

Deletion not possible!!!' and terminate the fuction.
 Step 6 - If it is reached to the exact node which we want to delete, then check whether list is

having only one node or not
 Step 7 - If list has only one node and that is the node which is to be deleted then

set head to NULL and delete temp (free(temp)).
 Step 8 - If list contains multiple nodes, then check whether temp is the first node in the list

(temp == head).
 Step 9 - If temp is the first node, then move the head to the next node (head = head → next),

set head of previous to NULL (head → previous = NULL) and delete temp.
 Step 10 - If temp is not the first node, then check whether it is the last node in the list (temp

→ next == NULL).
 Step 11 - If temp is the last node then set temp of previous of next to NULL (temp →

previous → next = NULL) and delete temp (free(temp)).
 Step 12 - If temp is not the first node and not the last node, then

set temp of previous of next to temp of next (temp → previous → next = temp →
next), temp of next of previous to temp of previous (temp → next → previous = temp →
previous) and delete temp (free(temp)).

Displaying a Double Linked List
We can use the following steps to display the elements of a double linked list...

 Step 1 - Check whether list is Empty (head == NULL)
 Step 2 - If it is Empty, then display 'List is Empty!!!' and terminate the function.
 Step 3 - If it is not Empty, then define a Node pointer 'temp' and initialize with head.
 Step 4 - Display 'NULL <--- '.
 Step 5 - Keep displaying temp → data with an arrow (<===>) until temp reaches to the last

node
 Step 6 - Finally, display temp → data with arrow pointing to NULL (temp → data --->

NULL).

Doubly Circular Linked List:
Circular Doubly Linked List has properties of both doubly linked list and circular linked

list in which two consecutive elements are linked or connected by previous and next pointer and the
last node points to first node by next pointer and also the first node points to last node by the previous
pointer.

Following is representation of a Circular doubly linked list node in C/C++:
// Structure of the node
struct node
{

int data;
struct node *next; // Pointer to next node
struct node *prev; // Pointer to previous node

};

Insertion in Circular Doubly Linked List:
 Insertion at the end of list or in an empty list

o Empty List (start = NULL): A node(Say N) is inserted with data = 5, so previous
pointer of N points to N and next pointer of N also points to N. But now start pointer
points to the first node the list.

 List initially contains some nodes, start points to first node of the List: A node(newNode

M) is inserted with data = 7, so previous pointer of M points to last node, next pointer of M
points to first node and last node’s next pointer points to this M node and first node’s previous
pointer points to this M node.

Insertion at the beginning of the list:
To insert a node at the beginning of the list, create a node(newNode T) with data = 5, T next

pointer points to first node of the list, T previous pointer points to last node the list, last node’s next
pointer points to this T node, first node’s previous pointer also points this T node and at last don’t
forget to shift ‘Start’ pointer to this T node.

Insertion in between the nodes of the list:
To insert a node in between the list, two data values are required one after which new node will

be inserted and another is the data of the new node.

Following are the advantages and disadvantages of a circular doubly linked list:
Advantages:

 List can be traversed from both directions i.e. from head to tail or from tail to head.
 Jumping from head to tail or from tail to head is done in constant time O(1).
 Circular Doubly Linked Lists are used for the implementation of advanced data structures like

Fibonacci Heap.
Disadvantages

 It takes slightly extra memory in each node to accommodate the previous pointer.
 Lots of pointers involved while implementing or doing operations on a list. So, pointers should

be handled carefully otherwise data of the list may get lost.
Applications of Circular doubly linked list

 Managing songs playlist in media player applications.
 Managing shopping cart in online shopping.

End of the Unit-3

UNIT-4

Trees
A tree is a data structure consisting of nodes organized as a hierarchy. Tree is a widely

used data structure that simulates a hierarchical tree structure, with a root value and subtrees of
children with a parent node, represented as a set of linked nodes.

In a tree data structure, if we have N number of nodes then we can have a maximum of N-1
number of links.
 Example Tree

Binary Tree : Binary Tree is a special used for data storage purposes. Binary tree is a special type of
tree data structure in which every node can have a maximum of 2 children. One is known as left child
and the other is known as right child.

A binary tree has the benefits of both an ordered array and a linked list as search is as quick as
in a sorted array and insertion or deletion operation are as fast as in linked list.

Following are the important terms with respect to tree.

 Path − Path refers to the sequence of nodes along the edges of a tree.
 Root − The node at the top of the tree is called root. There is only one root per tree and one

path from the root node to any node.
 Parent − Any node except the root node has one edge upward to a node called parent.
 Child − The node below a given node connected by its edge downward is called its child node.
 Leaf − The node which does not have any child node is called the leaf node.
 Subtree − Subtree represents the descendants of a node.
 Edge : a connector between one node to another
 Depth: The depth of a node is the number of edges from the node to the tree's root node.
 Height of node – The height of a node is the number of edges on the longest downward path

between that node and a leaf.
 Levels − Level of a node represents the generation of a node. If the root node is at level 0, then

its next child node is at level 1, its grandchild is at level 2, and so on.
 keys − Key represents a value of a node based on which a search operation is to be carried out

for a node.

Binary Tree properties :

1) A tree with n nodes has exactly (n-1) edges or branches.
2) In a tree every node except the root has exactly one parent (and the root node does not

have a parent)
3) There is exactly one path connecting any two nodes in a tree.
4) The maximum number of nodes in a binary tree of height K is 2K+1-1 where K>=0.

(or you can also write the below steps)
1. The maximum number of nodes at level ‘l’ of a binary tree is 2 l-1.

Here level is number of nodes on path from root to the node (including root and node). Level of
root is 1. This can be proved by induction.
For root, l = 1, number of nodes = 21-1 = 1
Assume that maximum number of nodes on level l is 2l-1
Since in Binary tree every node has at most 2 children, next level would have twice nodes, i.e. 2
* 2l-1

2. Maximum number of nodes in a binary tree of height ‘h’ is 2h – 1.
Here height of a tree is maximum number of nodes on root to leaf path. Height of a leaf node is
considered as 1.
 This result can be derived from point 2 above. A tree has maximum nodes if all levels have
maximum nodes. So maximum number of nodes in a binary tree of height h is 1 + 2 + 4 + .. +
2h-1 This is a simple geometric series with h terms and sum of this series is 2h – 1.
In some books, height of a leaf is considered as 0. In this convention, the above formula
becomes 2h+1 – 1

3. In a Binary Tree with N nodes, minimum possible height or minimum number of levels is
[Log2(N+1)]
This can be directly derived from point 2 above. If we consider the convention where height of
a leaf node is considered as 0, then above formula for minimum possible height becomes
[Log2(N+1)] – 1

4. A Binary Tree with L leaves has at least [Log2L] + 1 levels
A Binary tree has maximum number of leaves when all levels are fully filled.

5. In Binary tree, number of leaf nodes is always one more than nodes with two children.
Binary Tree Representations
A binary tree data structure is represented by using two methods. Those methods are as follows...

1. Array Representation
2. Linked List Representation

 Consider the following binary tree...

1. Array Representation / Sequential
Representation:
In array representation of binary tree, we use a one dimensional array (1-D Array) to represent

a binary tree. Consider the above example of binary tree and it is represented as follows...
To represent a binary tree of depth 'n' using array representation, we need one dimensional

array with a maximum size of 2n+1 - 1.

Case-I:

A B C D E F G H I

Index 0 1 2 3 4 5 6 7 8
If you representing binary tree by using arrays that too from index 0 (zero) then

5) If a node is at i th index:-
 Left child would be at:- [(2*i)+1]
 Right child would be at:- [(2*i)*2]

 Parent would be at:- ⌊(𝑖−1)2 ⌋
Case-II:

A B C D E F G H I

Index 1 2 3 4 5 6 7 8 9
If you representing binary tree by using arrays that too from index 1 (one) then

1) If a node is at i th index:-
 Left child would be at:- (2*i)
 Right child would be at:- [(2*i)*1]

 Parent would be at:- ⌊ 𝑖2⌋

Another Example:

Array Representation

2. Linked List Representation
We use double linked list to represent a binary tree. In a double linked list, every node consists

of three fields. First field for storing left child address, second for storing actual data and third for
storing right child address.
In this linked list representation, a node has the following structure...

The above example of binary tree represented using Linked list representation is shown as follows...

 Binary trees in linked representation are stored in the memory as linked lists. These lists have
nodes that aren’t stored at adjacent or neighboring memory locations and are linked to each other
through the parent-child relationship associated with trees.
In this representation, each node has three different parts –

1) pointer that points towards the right node,
2) pointer that points towards the left node,
3) data element.

 This is the more common representation. All binary trees consist of a root pointer that point in
the direction of the root node. When you see a root node pointing towards null or 0, you should know
that you are dealing with an empty binary tree. The right and left pointers store the address of the right
and left children of the tree.
Applications of Binary Trees:
 Binary Search Tree - Used in many search applications where data is constantly entering/leaving,

such as the map and set objects in many languages libraries.
 Binary Space Partition - Used in almost every 3D video game to determine what objects need to be

rendered.
 Binary Tries - Used in almost every high-bandwidth router for storing router-tables.
 Hash Trees - used in p2p programs and specialized image-signatures in which a hash needs to be

verified, but the whole file is not available.
 Heaps - Used in implementing efficient priority-queues, which in turn are used for scheduling

processes in many operating systems, Quality-of-Service in routers, and A* (path-finding
algorithm used in AI applications, including robotics and video games). Also used in heap-sort.

 Huffman Coding Tree (Chip Uni) - used in compression algorithms, such as those used by the
.jpeg and .mp3 file-formats.

 GGM Trees - Used in cryptographic applications to generate a tree of pseudo-random numbers.
 Syntax Tree - Constructed by compilers and (implicitly) calculators to parse expressions.
 Treap - Randomized data structure used in wireless networking and memory allocation.
 T-tree - Though most databases use some form of B-tree to store data on the drive, databases

which keep all (most) their data in memory often use T-trees to do so.
Binary Tree Traversals:
 When we wanted to display a binary tree, we need to follow some order in which all the nodes of that
binary tree must be displayed. In any binary tree, displaying order of nodes depends on the traversal method.

Displaying (or) visiting order of nodes in a binary tree is called as Binary Tree Traversal.
There are three types of binary tree traversals.

1. In - Order Traversal
2. Pre - Order Traversal
3. Post - Order Traversal

Consider the following binary tree...

1. In - Order Traversal (leftChild - root - rightChild) Left-Root-Right
 In In-Order traversal, the root node is visited between the left child and right child. In this traversal, the
left child node is visited first, then the root node is visited and later we go for visiting the right child node. This
in-order traversal is applicable for every root node of all subtrees in the tree. This is performed recursively for all
nodes in the tree.
 In the above example of a binary tree, first we try to visit left child of root node 'A', but A's left child 'B'
is a root node for left subtree. so we try to visit its (B's) left child 'D' and again D is a root for subtree with nodes
D, I and J. So we try to visit its left child 'I' and it is the leftmost child. So first we visit 'I' then go for its root
node 'D' and later we visit D's right child 'J'. With this we have completed the left part of node B. Then
visit 'B' and next B's right child 'F' is visited. With this we have completed left part of node A. Then visit root
node 'A'. With this we have completed left and root parts of node A. Then we go for the right part of the node A.
In right of A again there is a subtree with root C. So go for left child of C and again it is a subtree with root G.
But G does not have left part so we visit 'G' and then visit G's right child K. With this we have completed the
left part of node C. Then visit root node 'C' and next visit C's right child 'H' which is the rightmost child in the
tree. So we stop the process.
 That means here we have visited in the order of I - D - J - B - F - A - G - K - C - H using In-Order
Traversal.

In-Order Traversal for above example of binary tree is
I - D - J - B - F - A - G - K - C - H

2. Pre - Order Traversal (root - leftChild - rightChild) Root, Left, Right
In Pre-Order traversal, the root node is visited before the left child and right child nodes. In this traversal, the
root node is visited first, then its left child and later its right child. This pre-order traversal is applicable for every
root node of all subtrees in the tree.
In the above example of binary tree, first we visit root node 'A' then visit its left child 'B' which is a root for D
and F. So we visit B's left child 'D' and again D is a root for I and J. So we visit D's left child 'I' which is the
leftmost child. So next we go for visiting D's right child 'J'. With this we have completed root, left and right
parts of node D and root, left parts of node B. Next visit B's right child 'F'. With this we have completed root and
left parts of node A. So we go for A's right child 'C' which is a root node for G and H. After visiting C, we go for
its left child 'G' which is a root for node K. So next we visit left of G, but it does not have left child so we go for
G's right child 'K'. With this, we have completed node C's root and left parts. Next visit C's right child 'H' which
is the rightmost child in the tree. So we stop the process.

That means here we have visited in the order of A-B-D-I-J-F-C-G-K-H using Pre-Order Traversal.

Pre-Order Traversal for above example binary tree is
A - B - D - I - J - F - C - G - K - H

3. Post - Order Traversal (leftChild - rightChild - root) Left, Right, Root
In Post-Order traversal, the root node is visited after left child and right child. In this traversal, left child node is
visited first, then its right child and then its root node. This is recursively performed until the right most node is
visited.

Here we have visited in the order of I - J - D - F - B - K - G - H - C - A using Post-Order Traversal.

Post-Order Traversal for above example binary tree is
I - J - D - F - B - K - G - H - C - A

Binary Search Tree (BST): or for Binary Tree Operations (Binary Tree will not follow the
greater or lesser formula)
A Binary Search Tree (BST) is a tree in which all the nodes follow the below-mentioned properties.

 The left sub-tree of a node has a key less than or equal to its parent node's key.
 The right sub-tree of a node has a key greater than to its parent node's key.
 The left and right subtree each must also be a binary search tree.

There must be no duplicate nodes.
Thus, BST divides all its sub-trees into two segments; the left sub-tree and the right sub-tree .

Representation : BST is a collection of nodes arranged in a
way where they maintain BST properties. Each node has a key
and an associated value. While searching, the desired key
is compared to the keys in BST and if found, the associated
value is retrieved.
Following example representations of BST −

Basic Operations in BST:
Following are the basic operations of a Binary Search tree −

 Search − Searches an element in a tree.
 Insert − Inserts an element in a tree.
 Deletion- Delete an element from the tree.

Search Operation : Whenever an element is to be searched, start searching from the root node.
Then if the data is less than the key value, search for the element in the left subtree. Otherwise,
search for the element in the right subtree. Follow the same algorithm for each node.

 item == root.val: We terminate the search as the item is found
 item > root.val: We just check the right subtree because all the values in the left subtree are lesser

than root.val
 item < root.val: Now we just check the left subtree as all values in the right subtree are greater

than root.val

Insert Operation: Whenever an element is to be inserted, first locate its proper location. Start
searching from the root node, then if the data is less than the key value, search for the empty
location in the left subtree and insert the data. Otherwise, search for the empty location in the
right subtree and insert the data.

1. If the root is NULL, create a new node with value item and return it.
2. Else, Compare item with root.val

 If root.val < item, recurse for right subtree
 If root.val > item, recurse for left subtree

Example:

Deletion Operation:
When we delete a node in BST, we may encounter three cases →

1. The node to be deleted is a leaf node: Easiest case, simply remove the node from the tree

2. The node to be deleted has only one child: Replace the node by its child
3. The node to be deleted has both children: The node still needs to be replaced to maintain

BST properties, but which node should replace this deleted node?

Suppose we have to delete the node with value 6, which node should be selected ideally to replace
this node?
→ The inorder successor of this node would be the aptest choice to replace this node as its inorder
successor is the smallest element that is greater than this node.
Note: The inorder predecessor can be used to replace this node too. But conventionally, we use the
inorder successor to replace the node.
Solution Steps
You need to delete the node with value item and then return the root of the modified tree. First, we
need to find the node to be deleted and then replace it by the appropriate node if needed.

1. Check if the root is NULL, if it is, just return the root itself. It's an empty tree!
2. If root.val < item, recurse the right subtree.
3. If root.val > item, recurse the left subtree.
4. If both above conditions above false, this means root.val == item.
5. Now we first need to check how many child did root have.
6. CASE 1: No Child → Just delete root or deallocate space occupied by it
7. CASE 2: One Child →Replace root by its child
8. CASE 3: Two Children

 Find the inorder successor of the root (Its the smallest element of its right subtree). Let's
call it new_root.

 Replace root by its inorder successor
 Now recurse to the right subtree and delete new_root.

 9. Return the root.

Tree Traversals in Binary Search Tree:
Tree Traversals:

Displaying (or) visiting order of nodes in a binary tree is called as Binary Tree Traversal.
There are three types of binary tree traversals.

1. In - Order Traversal
2. Pre - Order Traversal
3. Post - Order Traversal

1. In-order Traversal : In this traversal method, the left subtree is visited first, then the root and
later the right sub-tree. We should always remember that every node may represent a subtree
itself.
If a binary tree is traversed in-order, the output will produce sorted key values in an ascending order.

We start from A, and following in-order traversal, we move to its left subtree B. B is also traversed in-
order. The process goes on until all the nodes are visited. The output of inorder traversal of this tree
will be −

D → B → E → A → F → C → G
2. Pre-order Traversal: In this traversal method, the root node is visited first, then the left subtree and
finally the right subtree.

We start from A, and following pre-order traversal, we first visit A itself and then move to its

left subtree B. B is also traversed pre-order. The process goes on until all the nodes are visited. The
output of pre-order traversal of this tree will be −

A → B → D → E → C → F → G

3. Post- Order Traversal : In this traversal method, the root node is visited last, hence the name.
First we traverse the left subtree, then the right subtree and finally the root node.

We start from A, and following pre-order traversal, we first visit the left subtree B. B is also traversed
post-order. The process goes on until all the nodes are visited. The output of post-order traversal of
this tree will be −
 D → E → B → F → G → C → A

Graphs:
Graph is a non linear data structure, it contains a set of points known as nodes (or vertices) and

set of linkes known as edges (or Arcs) which connets the vertices. A graph is defined as follows...
Graph is a collection of vertices and arcs which connects vertices in the graph.
Graph is a collection of nodes and edges which connects nodes in the graph.

Generally, a graph G is represented as G = (V , E), where V is set of vertices and E is set of edges.
Example
The following is a graph with 5 vertices and 6 edges.
This graph G can be defined as G = (V , E)
Where V = {A,B,C,D,E} and E = {(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(E,D)}.

Graph Terminology:
We use the following terms in graph data structure...
Vertex
A individual data element of a graph is called as Vertex. Vertex is also known as node. In above
example graph, A, B, C, D & E are known as vertices.
Edge
An edge is a connecting link between two vertices. Edge is also known as Arc. An edge is represented
as (startingVertex, endingVertex). For example, in above graph, the link between vertices A and B is
represented as (A,B). In above example graph, there are 7 edges (i.e., (A,B), (A,C), (A,D), (B,D),
(B,E), (C,D), (D,E)).
 Edges are three types.

1. Undirected Edge - An undirected egde is a bidirectional edge. If there is a undirected edge
between vertices A and B then edge (A , B) is equal to edge (B , A).

2. Directed Edge - A directed egde is a unidirectional edge. If there is a directed edge between
vertices A and B then edge (A , B) is not equal to edge (B , A).

3. Weighted Edge - A weighted egde is an edge with cost on it.
Undirected Graph
A graph with only undirected edges is said to be undirected graph.

Directed Graph
A graph with only directed edges is said to be directed graph.

Mixed Graph

A graph with undirected and directed edges is said to be mixed graph.

End vertices or Endpoints
The two vertices joined by an edge are called the end vertices (or endpoints) of the edge.
Origin If an edge is directed, its first endpoint is said to be origin of it.
Destination
If an edge is directed, its first endpoint is said to be origin of it and the other endpoint is said to be the
destination of the edge.
Adjacent
If there is an edge between vertices A and B then both A and B are said to be adjacent. In other words,
Two vertices A and B are said to be adjacent if there is an edge whose end vertices are A and B.
Incident An edge is said to be incident on a vertex if the vertex is one of the endpoints of that edge.
Outgoing Edge A directed edge is said to be outgoing edge on its orign vertex.
Incoming Edge A directed edge is said to be incoming edge on its destination vertex.
Degree Total number of edges connected to a vertex is said to be degree of that vertex.
Indegree Total number of incoming edges connected to a vertex is said to be indegree of that vertex.
Outdegree Total number of outgoing edges connected to a vertex is said to be outdegree of that vertex.
Parallel edges or Multiple edges
If there are two undirected edges to have the same end vertices, and for two directed edges to have the
same origin and the same destination. Such edges are called parallel edges or multiple edges.
Self-loop An edge (undirected or directed) is a self-loop if its two endpoints coincide.
Simple Graph A graph is said to be simple if there are no parallel and self-loop edges.
Path:
A path is a sequence of alternating vertices and edges that starts at a vertex and ends at a vertex such
that each edge is incident to its predecessor and successor vertex.

Graph Representations
Graph data structure is represented using following representations...

1. Adjacency Matrix
2. Incidence Matrix
3. Adjacency List

1) Adjacency Matrix
In this representation, graph can be represented using a matrix of size total number of vertices by total
number of vertices. That means if a graph with 4 vertices can be represented using a matrix of 4X4
class. In this matrix, rows and columns both represents vertices. This matrix is filled with either 1 or 0.
Here, 1 represents there is an edge from row vertex to column vertex and 0 represents there is no edge
from row vertex to column vertex.

For example, consider the following undirected graph representation...

Directed graph representation...

2) Incidence Matrix
In this representation, graph can be represented using a matrix of size total number of vertices by total
number of edges. That means if a graph with 4 vertices and 6 edges can be represented using a matrix
of 4X6 class. In this matrix, rows represent vertices and columns represent edges. This matrix is filled
with either 0 or 1 or -1. Here, 0 represents row edge is not connected to column vertex, 1 represents
row edge is connected as outgoing edge to column vertex and -1 represents row edge is connected as
incoming edge to column vertex.
For example, consider the following directed graph representation...

3) Adjacency List
In this representation, every vertex of graph contains list of its adjacent vertices.

For example, consider the following directed graph representation implemented using linked list...

This representation can also be implemented using array as follows..

ELEMENTARY GRAPH OPERATIONS:
 Given a graph G = (V E) and a vertex v in V(G) we wish to visit all vertices in G that are
reachable from v (i.e., all vertices that are connected to v). We shall look at two ways of doing this:
depth-first search and breadth-first search.
 Although these methods work on both directed and
undirected graphs the following discussion assumes that the graphs are undirected.

Graph Traversals:

Graph traversal is technique used for searching a vertex in a graph. The graph traversal is also
used to decide the order of vertices to be visit in the search process. A graph traversal finds the edges to
be used in the search process without creating loops that means using graph traversal we visit all
vertices of graph without getting into looping path.
There are two graph traversal techniques and they are as follows...

 DFS (Depth First Search)
 BFS (Breadth First Search)

DFS (Depth First Search)
DFS traversal of a graph, produces a spanning tree as final result. Spanning Tree is a graph

without any loops. We use Stack data structure with maximum size of total number of vertices in the
graph to implement DFS traversal of a graph.
We use the following steps to implement DFS traversal...
Step 1: Define a Stack of size total number of vertices in the graph.
Step 2: Select any vertex as starting point for traversal. Visit that vertex and push it on to the Stack.
Step 3: Visit any one of the adjacent vertex of the vertex which is at top of the stack which is not
 visited and push it on to the stack.
Step 4: Repeat step 3 until there are no new vertex to be visit from the vertex on top of the stack.
Step 5: When there is no new vertex to be visit then use back tracking(coming back to the vertex
 from which we came to current vertex) and pop one vertex from the stack.
Step 6: Repeat steps 3, 4 and 5 until stack becomes Empty.
Step 7: When stack becomes Empty, then produce final spanning tree by removing unused edges from
 the graph
Example

In next page

BFS (Breadth First Search)
BFS traversal of a graph, produces a spanning tree as final result. Spanning Tree is a graph

without any loops. We use Queue data structure with maximum size of total number of vertices in the
graph to implement BFS traversal of a graph.
We use the following steps to implement BFS traversal...
Step 1: Define a Queue of size total number of vertices in the graph.
Step 2: Select any vertex as starting point for traversal. Visit that vertex and insert it into the Queue.
Step 3: Visit all the adjacent vertices of the vertex which is at front of the Queue which is not visited
 and insert them into the Queue.
Step 4: When there is no new vertex to be visit from the vertex at front of the Queue then delete that
 vertex from the Queue.
Step 5: Repeat step 3 and 4 until queue becomes empty.
Step 6: When queue becomes Empty, then produce final spanning tree by removing unused edges from
the graph.
Example:

Connected Components :

Connectivity in an undirected graph means that every vertex can reach every other vertex via
any path. If the graph is not connected the graph can be broken down into Connected Components.

In graph theory, a connected component (or just component) of an undirected graph is a
subgraph in which any two vertices are connected to each other by paths, and which is connected to no
additional vertices in the supergraph. For example, the graph shown below has two connected
components. A vertex with no incident edges is itself a connected component. A graph that is itself
connected has exactly one connected component, consisting of the whole graph.

Strong Connectivity applies only to directed graphs. A directed graph is strongly connected if

there is a directed path from any vertex to every other vertex. This is same as connectivity in an
undirected graph, the only difference being strong connectivity applies to directed graphs and there
should be directed paths instead of just paths. Similar to connected components, a directed graph can be
broken down into Strongly Connected Components.

Finding connected components for an undirected graph is an easier task. We simple need to do

either BFS or DFS starting from every unvisited vertex, and we get all strongly connected components.
Below are steps based on DFS.
1) Initialize all vertices as not visited.
2) Do following for every vertex 'v'.
 (a) If 'v' is not visited before, call DFSUtil(v)
 (b) Print new line character

 Method: DFSUtil(v)

1) Mark 'v' as visited.
2) Print 'v'
3) Do following for every adjacent 'u' of 'v'.
 If 'u' is not visited, then recursively call DFSUtil(u)

What is a spanning tree?
 A spanning tree can be defined as the subgraph of an undirected connected graph. It includes all
the vertices along with the least possible number of edges. If any vertex is missed, it is not a spanning
tree. A spanning tree is a subset of the graph that does not have cycles, and it also cannot be
disconnected.
 A spanning tree consists of (n-1) edges, where 'n' is the number of vertices (or nodes). Edges of
the spanning tree may or may not have weights assigned to them.
 A complete undirected graph can have n n-2 number of spanning trees where n is the number of
vertices in the graph. Suppose, if n = 5, the number of maximum possible spanning trees would be
55-2 = 125.
Applications of the spanning tree:
Basically, a spanning tree is used to find a minimum path to connect all nodes of the graph. Some of the
common applications of the spanning tree are listed as follows -

 Cluster Analysis
 Civil network planning
 Computer network routing protocol

Now, let's understand the spanning tree with the help of an example.

Properties of Spanning Tree:
We now understand that one graph can have more than one spanning tree. Following are a few
properties of the spanning tree connected to graph G −

 A connected graph G can have more than one spanning tree.
 All possible spanning trees of graph G, have the same number of edges and vertices.
 The spanning tree does not have any cycle (loops).
 Removing one edge from the spanning tree will make the graph disconnected, i.e. the spanning

tree is minimally connected.
 Adding one edge to the spanning tree will create a circuit or loop, i.e. the spanning tree

is maximally acyclic.
Minimum Spanning Tree (MST):

In a weighted graph, a minimum spanning tree is a spanning tree that has minimum weight than
all other spanning trees of the same graph. In real-world situations, this weight can be measured as
distance, congestion, traffic load or any arbitrary value denoted to the edges.
Minimum Spanning-Tree Algorithm
We shall learn about two most important spanning tree algorithms here −

 Kruskal's Algorithm
 Prim's Algorithm

Both are greedy algorithms.

1) Kruskal's algorithm is used to find the minimum cost spanning tree uses the greedy approach.

This algorithm treats the graph as a forest and every node it has as an individual tree. A tree
connects to another only and only if, it has the least cost among all available options and does not
violate MST properties.

To understand Kruskal's algorithm let us consider the following example −

Step 1 - Remove all loops and Parallel Edges
Remove all loops and parallel edges from the given graph.

In case of parallel edges, keep the one which has the least cost associated and remove all others.

Step 2 - Arrange all edges in their increasing order of weight
The next step is to create a set of edges and weight, and arrange them in an ascending order of
weightage (cost).

Step 3 - Add the edge which has the least weightage
Now we start adding edges to the graph beginning from the one which has the least weight.
Throughout, we shall keep checking that the spanning properties remain intact. In case, by adding one
edge, the spanning tree property does not hold then we shall consider not to include the edge in the
graph.

The least cost is 2 and edges involved are B,D and D,T. We add them. Adding them does not violate
spanning tree properties, so we continue to our next edge selection.
Next cost is 3, and associated edges are A,C and C,D. We add them again −

Next cost in the table is 4, and we observe that adding it will create a circuit in the graph. −

We ignore it. In the process we shall ignore/avoid all edges that create a circuit.

We observe that edges with cost 5 and 6 also create circuits. We ignore them and move on.

Now we are left with only one node to be added. Between the two least cost edges available 7 and 8,
we shall add the edge with cost 7.

By adding edge S,A we have included all the nodes of the graph and we now have minimum cost
spanning tree.

2) Prim's algorithm is used to find minimum cost spanning tree (as Kruskal's algorithm) uses the
greedy approach. Prim's algorithm shares a similarity with the shortest path first algorithms.
Prim's algorithm, in contrast with Kruskal's algorithm, treats the nodes as a single tree and keeps on
adding new nodes to the spanning tree from the given graph.

To contrast with Kruskal's algorithm and to understand Prim's algorithm better, we shall use the same
example −

Step 1 - Remove all loops and parallel edges

Remove all loops and parallel edges from the given graph. In case of parallel edges, keep the one which
has the least cost associated and remove all others.

Step 2 - Choose any arbitrary node as root node
In this case, we choose S node as the root node of Prim's spanning tree. This node is arbitrarily chosen,
so any node can be the root node. One may wonder why any video can be a root node. So the answer is,
in the spanning tree all the nodes of a graph are included and because it is connected then there must be
at least one edge, which will join it to the rest of the tree.
Step 3 - Check outgoing edges and select the one with less cost
After choosing the root node S, we see that S,A and S,C are two edges with weight 7 and 8,
respectively. We choose the edge S,A as it is lesser than the other.

Now, the tree S-7-A is treated as one node and we check for all edges going out from it. We select the
one which has the lowest cost and include it in the tree.

After this step, S-7-A-3-C tree is formed. Now we'll again treat it as a node and will check all the edges
again. However, we will choose only the least cost edge. In this case, C-3-D is the new edge, which is
less than other edges' cost 8, 6, 4, etc.

After adding node D to the spanning tree, we now have two edges going out of it having the same cost,
i.e. D-2-T and D-2-B. Thus, we can add either one. But the next step will again yield edge 2 as the least
cost. Hence, we are showing a spanning tree with both edges included.

We may find that the output spanning tree of the same graph using two different algorithms is same.

*****End of The - UNIT-4*****

Extra material for TREE related concepts:
Tree Terminology

In linear data structure, data is organized in sequential order and in non-linear data structure,
data is organized in random order. Tree is a very popular data structure used in wide range of
applications. A tree data structure can be defined as follows...
Tree is a non-linear data structure which organizes data in hierarchical structure and this is a recursive
definition.
A tree data structure can also be defined as follows...
Tree data structure is a collection of data (Node) which is organized in hierarchical structure and this is
a recursive definition
In tree data structure, every individual element is called as Node. Node in a tree data structure, stores
the actual data of that particular element and link to next element in hierarchical structure.

In a tree data structure, if we have N number of nodes then we can have a maximum of N-1 number of
links.
Example

Terminology
In a tree data structure, we use the following terminology...
1. Root
In a tree data structure, the first node is called as Root Node. Every tree must have root node. We can
say that root node is the origin of tree data structure. In any tree, there must be only one root node. We
never have multiple root nodes in a tree.

2. Edge
In a tree data structure, the connecting link between any two nodes is called as EDGE. In a tree with 'N'
number of nodes there will be a maximum of 'N-1' number of edges.

3. Parent
In a tree data structure, the node which is predecessor of any node is called as PARENT NODE. In
simple words, the node which has branch from it to any other node is called as parent node. Parent node
can also be defined as "The node which has child / children".

4. Child
In a tree data structure, the node which is descendant of any node is called as CHILD Node. In simple
words, the node which has a link from its parent node is called as child node. In a tree, any parent node
can have any number of child nodes. In a tree, all the nodes except root are child nodes.

5. Siblings
In a tree data structure, nodes which belong to same Parent are called as SIBLINGS. In simple words,
the nodes with same parent are called as Sibling nodes.

6. Leaf
In a tree data structure, the node which does not have a child is called as LEAF Node. In simple

words, a leaf is a node with no child.
 In a tree data structure, the leaf nodes are also called as External Nodes. External node is also a
node with no child. In a tree, leaf node is also called as 'Terminal' node.
7. Internal Nodes

In a tree data structure, the node which has atleast one child is called as INTERNAL Node. In
simple words, an internal node is a node with atleast one child.
 In a tree data structure, nodes other than leaf nodes are called as Internal Nodes. The root
node is also said to be Internal Node if the tree has more than one node. Internal nodes are also called
as 'Non-Terminal' nodes.

8. Degree
In a tree data structure, the total number of children of a node is called as DEGREE of that Node. In
simple words, the Degree of a node is total number of children it has. The highest degree of a node
among all the nodes in a tree is called as 'Degree of Tree'

9. Level
In a tree data structure, the root node is said to be at Level 0 and the children of root node are at Level 1
and the children of the nodes which are at Level 1 will be at Level 2 and so on... In simple words, in a
tree each step from top to bottom is called as a Level and the Level count starts with '0' and
incremented by one at each level (Step).

10. Height
In a tree data structure, the total number of egdes from leaf node to a particular node in the longest path
is called as HEIGHT of that Node. In a tree, height of the root node is said to be height of the tree. In
a tree, height of all leaf nodes is '0'.

11. Depth
In a tree data structure, the total number of egdes from root node to a particular node is called as
DEPTH of that Node. In a tree, the total number of edges from root node to a leaf node in the longest
path is said to be Depth of the tree. In simple words, the highest depth of any leaf node in a tree is said
to be depth of that tree. In a tree, depth of the root node is '0'.

12. Path
In a tree data structure, the sequence of Nodes and Edges from one node to another node is called as
PATH between that two Nodes. Length of a Path is total number of nodes in that path. In below
example the path A - B - E - J has length 4.

13. Sub Tree
In a tree data structure, each child from a node forms a subtree recursively. Every child node will form
a subtree on its parent node.

Double Ended Queue:
Double Ended Queue is also a Queue data structure in which the insertion and deletion operations are
performed at both the ends (front and rear). That means, we can insert at both front and rear positions
and can delete from both front and rear positions.

Double Ended Queue can be represented in TWO ways, those are as follows...

1. Input Restricted Double Ended Queue
2. Output Restricted Double Ended Queue

Input Restricted Double Ended Queue:
In input restricted double-ended queue, the insertion operation is performed at only one end and
deletion operation is performed at both the ends.

Output Restricted Double Ended Queue:
In output restricted double ended queue, the deletion operation is performed at only one end and
insertion operation is performed at both the ends.

Threaded Binary Tree: (This topic not given in your syllabus. extra material)

A binary tree is represented using array representation or linked list representation. When a
binary tree is represented using linked list representation, if any node is not having a child we use
NULL pointer in that position. In any binary tree linked list representation, there are more number of
NULL pointer than actual pointers. Generally, in any binary tree linked list representation, if there are
2N number of reference fields, then N+1 number of reference fields are filled with NULL (N+1 are
NULL out of 2N). This NULL pointer does not play any role except indicating there is no link (no
child).

Threaded Binary Tree is also a binary tree in which all left child pointers that are NULL (in
Linked list representation) points to its in-order predecessor, and all right child pointers that are NULL
(in Linked list representation) points to its in-order successor.
Consider the following binary tree...

To convert above binary tree into threaded binary tree, first find the in-order traversal of that tree...
In-order traversal of above binary tree...

H - D - I - B - E - A - F - J - C - G
When we represent above binary tree using linked list representation, nodes H, I, E, F, J and G left
child pointers are NULL. This NULL is replaced by address of its in-order predecessor, respectively (I
to D, E to B, F to A, J to F and G to C), but here the node H does not have its in-order predecessor, so it
points to the root node A. And nodes H, I, E, J and G right child pointers are NULL. This NULL
ponters are replaced by address of its in-order successor, respectively (H to D, I to B, E to A, and J to
C), but here the node G does not have its in-order successor, so it points to the root node A.
Above example binary tree become as follows after converting into threaded binary tree.

Heap Data Structure: (This topic not given in your syllabus. extra material)
Heap data structure is a specialized binary tree based data structure. Heap is a binary tree with special
characteristics. In a heap data structure, nodes are arranged based on their value. A heap data structure,
sometime called as Binary Heap.
There are two types of heap data structures and they are as follows...

 Max Heap
 Min Heap

Every heap data structure has the following properties...
 1 (Ordering): Nodes must be arranged in a order according to values based on Max heap or Min heap.
 2 (Structural): All levels in a heap must full, except last level and nodes must be filled from left to right

strictly.
Max Heep: Max heap data structure is a specialized full binary tree data structure except last leaf node
can be alone. In a max heap nodes are arranged based on node value. Here, the value of the root node is
greater than or equal to either of its children.

Max Heap Construction Algorithm
At any point of time, heap must maintain its property. While insertion, we also assume that we are
inserting a node in an already heapified tree.

Step 1 − Create a new node at the end of heap.
Step 2 − Assign new value to the node.
Step 3 − Compare the value of this child node with its parent.
Step 4 − If value of parent is less than child, then swap them.
Step 5 − Repeat step 3 & 4 until Heap property holds.

Max Heap Deletion Algorithm
Let us derive an algorithm to delete from max heap. Deletion in Max (or Min) Heap always happens at
the root to remove the Maximum (or minimum) value.

Step 1 − Remove root node.
Step 2 − Move the last element of last level to root.
Step 3 − Compare the value of this child node with its parent.
Step 4 − If value of parent is less than child, then swap them.
Step 5 − Repeat step 3 & 4 until Heap property holds.

Min Heap –It is similar to Max Heap except that the value of the root
node is less than or equal to either of its children.

Connected Components:
A connected component or simply component of an undirected graph is a subgraph in which each pair
of nodes is connected with each other via a path.

Let’s try to simplify it further, though. A set of nodes forms a connected component in an undirected
graph if any node from the set of nodes can reach any other node by traversing edges. The main point
here is reachability.
In connected components, all the nodes are always reachable from each other.
Few Examples
In this section, we’ll discuss a couple of simple examples. We’ll try to relate the examples with the
definition given above.
3.1. One Connected Component
In this example, the given undirected graph has one connected component:

More Than One Connected Component
In this example, the undirected graph has three connected components:

Unit-5
Selection Sort:
 Selection sort is a simple sorting algorithm. The selection Sort algorithm is used to arrange a
list of elements in a particular order (Ascending or Descending).

In selection sort, the first element in the list is selected and it is compared repeatedly with
remaining all the elements in the list. If any element is smaller than the selected element (for
Ascending order), then both are swapped. Then we select the element at second position in the list and
it is compared with remaining all elements in the list. If any element is smaller than the selected
element, then both are swapped. This procedure is repeated till the entire list is sorted.

This sorting algorithm is an comparison-based algorithm in which the list is divided into two
parts, the sorted part at the left end and the unsorted part at the right end. Initially, the sorted part is
empty and the unsorted part is the entire list.

This process will be started from left most element and continues moving unsorted array
boundary by one element to the right.
Step by Step Process
The selection sort algorithm is performed using following steps...

 Step 1: Select the first element of the list (i.e., Element at first position in the list).
 Step 2: Compare the selected element with all other elements in the list.
 Step 3: For every comparison, if any element is smaller than selected element (for Ascending

order), then these two are swapped.
 Step 4: Repeat the same procedure with next position in the list till the entire list is sorted.

Example:

Continued in next page...

Insertion Sort:
Sorting is the process of arranging a list of elements in a particular order (Ascending or Descending).
 Insertion sort algorithm arranges a list of elements in a particular order. In insertion sort
algorithm, every iteration moves an element from unsorted portion to sorted portion until all the
elements are sorted in the list.
Step by Step Process:
The insertion sort algorithm is performed using following steps...

 Step 1: Assume that first element in the list is in sorted portion of the list and remaining all
elements are in unsorted portion.

 Step 2: Consider first element from the unsorted list and insert that element into the sorted list
in order specified.

 Step 3: Repeat the above process until all the elements from the unsorted list are moved into
the sorted list.

(or)

Step 1 − If it is the first element, it is already sorted. return 1;
Step 2 − Pick next element
Step 3 − Compare with all elements in the sorted sub-list
Step 4 − Shift all the elements in the sorted sub-list that is greater
 than the value to be sorted
Step 5 − Insert the value
Step 6 − Repeat until list is sorted

Example: in next page....

Bubble Sort: (Exchange Sort):
Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-based

algorithm in which each pair of adjacent elements is compared and the elements are swapped if they
are not in order. This algorithm is not suitable for large data sets as its average and worst case
complexity are of Ο(n2) where n is the number of items.
How Bubble Sort Works?
Now we should look into some practical aspects of bubble sort.
Algorithm:

We assume list is an array of n elements. We further assume that swap function swaps the
values of the given array elements.

begin BubbleSort(list)

 for all elements of list
 if list[i] > list[i+1]
 swap(list[i], list[i+1])
 end if
 end for
 return list

end BubbleSort

Step 1: Compare list[i] and list[i+1] and arrange them in the desired order.
 Step 1 continued until we compare list[n-1] and list[n] to Arrange.
Step 2: In the fisrt iteration, the higher element in the list is sorted out.
 So, we will repeat Step 1 with one less comparision.

Step n-1: Here, we compare only two elements called list[1] and list[2] and arrange them.
 Then finally list will be in increasing order.
We take an unsorted array for our example.

Like this the given array will be sorted.

Merge Sort:

Merge sort is a sorting technique based on divide and conquer technique. With worst-case time
complexity being Ο(n log n), it is one of the most respected algorithms.

Merge sort first divides the array into equal halves and then combines them in a sorted manner.
How Merge Sort Works?
To understand merge sort, we take an unsorted array as the following −

We know that merge sort first divides the whole array iteratively into equal halves unless the atomic
values are achieved. We see here that an array of 8 items is divided into two arrays of size 4.

This does not change the sequence of appearance of items in the original. Now we divide these two
arrays into halves.

We further divide these arrays and we achieve atomic value which can no more be divided.

Now, we combine them in exactly the same manner as they were broken down. Please note the color
codes given to these lists.

We first compare the element for each list and then combine them into another list in a sorted
manner. We see that 14 and 33 are in sorted positions. We compare 27 and 10 and in the target list of 2
values we put 10 first, followed by 27. We change the order of 19 and 35 whereas 42 and 44 are
placed sequentially.

In the next iteration of the combining phase, we compare lists of two data values, and merge them into
a list of found data values placing all in a sorted order.

After the final merging, the list should look like this −

Now we should learn some programming aspects of merge sorting.
Algorithm:
Merge sort keeps on dividing the list into equal halves until it can no more be divided. By definition, if
it is only one element in the list, it is sorted. Then, merge sort combines the smaller sorted lists
keeping the new list sorted too.
Step 1 − if it is only one element in the list it is already sorted, return.
Step 2 − divide the list recursively into two halves until it can no more be divided.
Step 3 − merge the smaller lists into new list in sorted order.

Another example for Merge Sort
(For understanding Purpose Only)

Heap Sort:

A sorting algorithm that works by first organizing the data to be sorted into a special type of
binary tree called a heap.

Definition: The largest value at the top of the tree (Max Heap) or The least value at the top of
the tree (Min Heap), so the heap sort algorithm must also reverse the order. It does this with the
following steps:

1. Remove the topmost item (the largest) and replace it with the rightmost leaf. The topmost item
 Is stored in an array.
2. Re-establish the heap. (move the last leaf to the root)
3. Repeat steps 1 and 2 until there are no more items left in the heap.

The sorted elements are now stored in an array.
A heap sort is especially efficient for data that is already stored in a binary tree. In most cases,

however, the quick sort algorithm is more efficient.
Input data: 4, 10, 3, 5, 1

4(0)
/ \

10(1) 3(2)
 / \
 5(3) 1(4)

The numbers in bracket represent the indexes in the array representation of data.

Applying heapify procedure to index 1:

4(0)
/ \

10(1) 3(2)
 / \
 5(3) 1(4)

Applying heapify procedure to index 0:

10(0)
/ \

5(1) 3(2)
 / \
 4(3) 1(4)
 As now root element is highest / max element so delete it and store in array.
The heapify procedure calls itself recursively to build heap in top down manner.
Each time root element will become max, then delete and store. This procedure for descending order.
For ascending order only the difference is root element will be min element.

Quick Sort:
Quick sort or partition-exchange sort, is a fast sorting algorithm, which is using divide and

conquer algorithm. Quicksort first divides a large list into two smaller sub-lists: the low elements and
the high elements. Quicksort can then recursively sort the sub-lists.

The quick sort uses divide and conquer to gain the same advantages as the merge sort, while
not using additional storage. As a trade-off, however, it is possible that the list may not be divided in
half. When this happens, we will see that performance is diminished.

A quick sort first selects a value, which is called the pivot value. Although there are many
different ways to choose the pivot value, we will simply use the first item in the list.

The role of the pivot value is to assist with splitting the list. The actual position where the
pivot value belongs in the final sorted list, commonly called the split point, will be used to divide the
list for subsequent calls to the quick sort.

Below example shows that 54 will serve as our first pivot value. Since we have looked at this
example a few times already, we know that 54 will eventually end up in the position currently holding
31. The partition process will happen next. It will find the split point and at the same time move other
items to the appropriate side of the list, either less than or greater than the pivot value.

Partitioning begins by locating two position markers—let’s call them leftmark and rightmark—at the
beginning and end of the remaining items in the list (positions 1 and 8 in Figure 13). The goal of the
partition process is to move items that are on the wrong side with respect to the pivot value while also
converging on the split point. Figure 13 shows this process as we locate the position of 54.

We begin by incrementing leftmark until we locate a value that is greater than the pivot value. We then
decrement rightmark until we find a value that is less than the pivot value. At this point we have

discovered two items that are out of place with respect to the eventual split point. For our example,
this occurs at 93 and 20. Now we can exchange these two items and then repeat the process again.
At the point where rightmark becomes less than leftmark, we stop. The position of rightmark is now
the split point. The pivot value can be exchanged with the contents of the split point and the pivot
value is now in place (Figure 14). In addition, all the items to the left of the split point are less than the
pivot value, and all the items to the right of the split point are greater than the pivot value. The list can
now be divided at the split point and the quick sort can be invoked recursively on the two halves.

Other Steps for the Algorithm.

Steps to implement Quick sort:
1) Choose an element, called pivot, from the list. Generally pivot can be the middle index element.
2) Reorder the list so that all elements with values less than the pivot come before the pivot, while all
elements with values greater than the pivot come after it (equal values can go either way). After this
partitioning, the pivot is in its final position. This is called the partition operation.
3) Recursively apply the above steps to the sub-list of elements with smaller values and separately the
sub-list of elements with greater values.

Linear Search. (or Sequential Search)
Linear search is a very simple search algorithm. In this type of search, a sequential search is made

over all items one by one. Every item is checked and if a match is found then that particular item is
returned, otherwise the search continues till the end of the data collection. If the element is not
matched to any one of the list then it says not found in the list.
Linear search is implemented using following steps...
 Step 1: Read the search element from the user
 Step 2: Compare, the search element with the first element in the list.
 Step 3: If both are matching, then display "Given element found!!!" and terminate the function
 Step 4: If both are not matching, then compare search element with the next element in the list.
 Step 5: Repeat steps 3 and 4 until the search element is compared with the last element in the list.
 Step 6: If the last element in the list is also doesn't match, then display "Element not found!!!" and

 terminate the function.
Example: If we are searching for 13 element in the given array, it will compare sequentially....

Binary Search (Recursive Binary Search for sorted list)

The binary search algorithm can be used with only sorted list of element. The binary search can
not be used for list of element which are in random order.

This search process starts comparing of the search element with the middle element in the list. If
both are matched, then the result is "element found". Otherwise, we check whether the search element
is smaller or larger than the middle element in the list.

If the search element is smaller, then we repeat the same process for left sublist of the middle

element. If the search element is larger, then we repeat the same process for right sublist of the middle
element. We repeat this process until we find the search element in the list or until we left with a
sublist of only one element.

And if that element also doesn't match with the search element, then the result is "Element not
found in the list".
Binary search is implemented using following steps...

 Step 1: Read the search element from the user
 Step 2: Find the middle element in the sorted list
 Step 3: Compare, the search element with the middle element in the sorted list.
 Step 4: If both are matching, then display "Given element found!!!" and terminate the function
 Step 5: If both are not matching, then check whether the search element is smaller or larger

than middle element.
 Step 6: If the search element is smaller than middle element, then repeat steps 2, 3, 4 and 5 for

the left sublist of the middle element.
 Step 7: If the search element is larger than middle element, then repeat steps 2, 3, 4 and 5 for

the right sublist of the middle element.
 Step 8: Repeat the same process until we find the search element in the list or until sublist

contains only one element.
 Step 9: If that element also doesn't match with the search element, then display "Element not

found in the list!!!" and terminate the function.

All The Best

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124

