

NOSQL
DATABASE

UNIT-1

Introduction
 NoSQL is a type of database management system (DBMS)

that is designed to handle and store large volumes of
unstructured and semi-structured data.

 The traditional relational databases that use tables with

pre-defined schemas to store data.

 NoSQL databases use flexible data models that can adapt
to changes in data structures and are capable of scaling

horizontally to handle growing amounts of data.

 The term NoSQL originally referred to “non-SQL” or “non-
relational” databases, but the term has since evolved to

mean “not only SQL,” as NoSQL databases have expanded
to include a wide range of different database architectures

and data models.

 NoSQL databases store data differently than relational
tables. NoSQL databases come in a variety of types based on

their data model.

 The main types are document, key-value, wide-column, and
graph. They provide flexible schemas and scale easily with

large amounts of big data and high user loads.

Key Features of NoSQL:

1. Dynamic schema: NoSQL databases do not have a fixed
schema and can accommodate changing data structures

without the need for migrations or schema alterations.

https://www.mongodb.com/document-databases

2. Horizontal scalability: NoSQL databases are designed to
scale out by adding more nodes to a database cluster, making

them well-suited for handling large amounts of data and high
levels of traffic.

4. Document-based: MongoDB, use a document-based data
model

5. Key-value-based: Redis, use a key-value data model, where
data is stored as a collection of key-value pairs.

5. Column-based: Cassandra, use a column-based data model,
where data is organized into columns instead of rows.

6. Distributed and high availability: NoSQL databases are
often designed to be highly available and to automatically

handle node failures and data replication across multiple
nodes in a database cluster.

7. Flexibility: NoSQL databases allow developers to store and
retrieve data in a flexible and dynamic manner, with support

for multiple data types and changing data structures.
8. Performance: NoSQL databases are optimized for high

performance and can handle a high volume of reads and
writes, making them suitable for big data and real-time
applications.

Advantages of NoSQL:

1.High scalability: NoSQL databases use sharding for
horizontal scaling. Partitioning of data and placing it on multiple

machines in such a way that the order of the data is preserved
is sharding.

2.Flexibility: NoSQL databases are designed to handle
unstructured or semi-structured data, which means that they

can accommodate dynamic changes to the data model.
3.High availability: The auto, replication feature in NoSQL

databases makes it highly available because in case of any
failure data replicates itself to the previous consistent state.

4. Scalability: NoSQL databases are highly scalable, that they
can handle large amounts of data and traffic with ease.

5. Performance: NoSQL databases are designed to handle large
amounts of data and traffic, that they can offer improved

performance compared to traditional relational databases.
6. Cost-effectiveness: NoSQL databases are often more cost-

effective than traditional relational databases, as they are

typically less complex and do not require expensive hardware
or software.

7. Agility: Ideal for agile development.

Disadvantages of NoSQL:
1. Lack of standardization: lack of standardization can make

it difficult to choose the right database for a specific
application

2. Lack of ACID compliance: NoSQL databases are not fully
ACID-compliant, that they do not guarantee the consistency,

integrity, and durability of data.
3. Narrow focus: NoSQL databases have a very narrow focus as

it is mainly designed for storage but it provides very little
functionality.

4. Open-source: NoSQL is an database open-source database.
There is no reliable standard for NoSQL yet.

5. Lack of support for complex queries: NoSQL databases are
not designed to handle complex queries, that they are not a

good fit for applications that require complex data analysis or
reporting.

7. Lack of maturity: NoSQL databases are relatively new and
lack the maturity of traditional relational databases.

8. Management challenge: The purpose of big data tools is to

make the management of a large amount of data as simple as
possible.

9. GUI is not available: GUI mode tools to access the database
are not flexibly available in the market.

10. Backup: Backup is a great weak point for some NoSQL
databases like MongoDB. MongoDB has no approach for the

backup of data in a consistent manner

FOUR TYPES OF NOSQL DATABASES

Types of databases — NoSQL
Four major types of NoSQL databases have emerged:
1.Document databases

2. Key-value databases
3. Wide-column stores

4. Graph databases.

1. Document-oriented databases

 A document-oriented database stores data in documents
similar to JSON objects. Each document contains pairs of

fields and values.

https://mongodb.com/scale/types-of-nosql-databases
https://mongodb.com/databases/key-value-database

 The values can typically be a variety of types, including
things like strings, numbers, booleans, arrays, or even other

objects.
Example:

{
 "_id": "12345",

 "name": "foo bar",
 "email": "foo@bar.com",

 "address": {
 "street": "123 foo street",

 "city": "some city",
 "state": "some state",

 "zip": "123456"
 },

 "hobbies": ["music", "guitar", "reading"]
}

2. Key-value databases
 A key-value store is a simpler type of database where each

item contains keys and values.

 Each key is unique and associated with a single value. They
are used for caching and session management and provide

high performance in reads and writes because they tend to
store things in memory.

Example:
Key: user:12345

Value: {"name": "foo bar", "email": "foo@bar.com", "designation":
"software developer"}

3. Wide-column stores
 Wide-column stores store data in tables, rows, and dynamic

columns. The data is stored in tables. unlike traditional SQL

databases, wide-column stores are flexible, where different
rows can have different sets of columns.

 These databases can employ column compression
techniques to reduce the storage space and enhance

performance. The wide rows and columns enable efficient
retrieval of sparse and wide data.

Example:

Graph databases
 A graph database stores data in the form of nodes and

edges.
 Nodes typically store information about people, places, and

things (like nouns).
 Edges store information about the relationships between

the nodes. They work well for highly connected data, where

the relationships or patterns may not be very obvious
initially.

Example:

NOSQL ARCHITECTURE
Architecture is a logical way of categorizing data that will be

stored on the Database. NoSQL is a type of database which
helps to perform operations on big data and store it in a valid

format. It is widely used because of its flexibility and a wide
variety of services.

Architecture Patterns of NoSQL:
The data is stored in NoSQL in any of the following four data

architecture patterns.
1. Key-Value Store Database

2. Column Store Database
3. Document Database

4. Graph Database
1.Key-Value Store Database:

o This model is one of the most basic models of NoSQL
databases. The data is stored in form of Key-Value

Pairs.
o The key is usually a sequence of strings, integers or

characters but can also be a more advanced data

type.
o The value is typically linked or co-related to the key.

The key-value pair storage databases generally store
data as a hash table where each key is unique. The

value can be of any type JSON, BLOB(Binary Large
Object), strings.

o This type of pattern is usually used in shopping
websites or e-commerce applications.

Advantages:
 Can handle large amounts of data and heavy load,

 Easy retrieval of data by keys.
Limitations:

 Complex queries may attempt to involve multiple key-value
pairs which may delay performance.

 Data can be involving many-to-many relationships which may
collide.

Examples:
 DynamoDB
 Berkeley DB

https://www.geeksforgeeks.org/introduction-to-nosql/

2.Column Store Database:

o Rather than storing data in relational tuples, the data
is stored in individual cells which are further grouped

into columns.
o Column-oriented databases work only on columns.

They store large amounts of data into columns
together.

o Format and titles of the columns can diverge from one

row to other. Every column is treated separately.
Advantages:

 Data is readily available
 Queries like SUM, AVERAGE, COUNT can be easily performed

on columns.
Examples:

 HBase
 Bigtable by Google

 Cassandra

3.Document Database:

o The document database fetches and accumulates data

in form of key-value pairs but here, the values are
called as Documents.

o Document can be stated as a complex data structure.
Document here can be a form of text, arrays, strings,

JSON, XML or any such format.
o The use of nested documents is also very common. It

is very effective as most of the data created is usually
in form of JSONs and is unstructured.

Advantages:
 This type of format is very useful and apt for semi-structured

data.
 Storage retrieval and managing of documents is easy.

Limitations:
 Handling multiple documents is challenging

 Aggregation operations may not work accurately.
Examples:
 MongoDB

 CouchDB

4. Graph Databases:

o This architecture pattern deals with the storage and
management of data in graphs. Graphs are basically

structures that depict connections between two or more
objects in some data.

o The objects or entities are called as nodes and are joined
together by relationships called Edges. Each edge has a
unique identifier. Each node serves as a point of contact for

the graph.
o This pattern is very commonly used in social networks

where there are a large number of entities and each entity
has one or many characteristics which are connected by

edges. The relational database pattern has tables that are
loosely connected, whereas graphs are often very strong

and rigid in nature.
Advantages:

 Fastest traversal because of connections.
 Spatial data can be easily handled.

Limitations:
Wrong connections may lead to infinite loops.

Examples:
 Neo4J

 Flock DB (Used by Twitter)

DEFINE OBJECTS:

In NoSQL databases, there isn't a fixed schema (like in relational
databases), so objects are defined more flexibly. Objects can be

structured as key-value pairs, documents, graphs, or columns,
depending on the type of NoSQL database.

 Key-Value Store (e.g., Redis, DynamoDB): Objects are
defined as keys associated with specific values (which can
be a string, JSON object, number, etc.).

 Document Store (e.g., MongoDB, CouchDB): Objects are
often defined as documents, which are similar to JSON or

BSON objects. Each document is typically a key-value pair
where the key is a unique identifier (e.g., _id), and the value
is a structured document.

 Column Store (e.g., Cassandra, HBase): Objects are
defined as rows with a set of columns that can store diverse

data types.
 Graph Database (e.g., Neo4j, ArangoDB): Objects are

defined as nodes, edges, and properties that represent
entities and their relationships.

Example (Document Store like MongoDB):

{
 "_id": "12345",

 "name": "John Doe",
 "age": 30,

 "address": { "street": "123 Elm St", "city": "Exampleville" }
}

Loading Data:

Loading data into a NoSQL database can vary depending on the
type of database you’re using. Generally, you load data by
inserting documents, rows, or key-value pairs.

 Key-Value Store: You insert key-value pairs into the
database.

Example in Redis
redis.set("user:12345", '{"name": "John Doe", "age": 30}')

 Document Store: You typically load documents into
collections or tables.

// Example in MongoDB

db.users.insertOne({ name: "John Doe", age: 30, address: "123
Elm St" });

 Column Store: You insert data into rows with a column
family.

Example in Cassandra

session.execute("INSERT INTO users (id, name, age) VALUES
(12345, 'John Doe', 30)")

 Graph Database: You add nodes and edges.
Example in Neo4j
graph.run("CREATE (u:User {id: 12345, name: 'John Doe'})")

Querying Data:

NoSQL databases often have flexible query languages, some
similar to SQL, while others have unique query methods. Here's

an overview:

 Key-Value Store: You query based on the key. There are no
complex queries like in SQL.

Example in Redis

user = redis.get("user:12345")

 Document Store: Querying is typically done using a query
language (e.g., MongoDB’s query language or MQL).

// Example in MongoDB
db.users.find({ "name": "John Doe" })

 Column Store: Querying is done based on rows and column
families.

Example in Cassandra
rows = session.execute("SELECT * FROM users WHERE id =

12345")

 Graph Database: You query based on relationships between
nodes, typically using a graph query language like Cypher

(Neo4j).
// Example in Neo4j

MATCH (u:User {id: 12345}) RETURN u.name

PERFORMANCE TUNE COLUMN-ORIENTED NOSQL
DATABASES

Performance tuning for column-oriented NoSQL databases
involves optimizing multiple factors to ensure high throughput,

low latency, and efficient resource usage.

1. Data Modeling

 Schema Design: In column-family NoSQL databases
carefully design your schema to suit your query patterns.

 Partitioning and Clustering: Ensure that data is

partitioned and clustered efficiently. Use partition keys that
balance the load evenly across nodes to avoid hot spots.

 Wide Rows: In querying a lot of related data, store it in a
"wide row" format to minimize the number of reads that

rows don't grow too large to avoid performance degradation

due to storage or query time.

2. Indexing Strategies

 Secondary Indexes: Use secondary indexes wisely. While
they are useful, they can introduce performance bottlenecks
when data grows large.

 Materialized Views: Consider using materialized views in

Cassandra for frequently queried patterns to avoid
expensive read operations.

 Avoid Global Secondary Indexes: In systems like
Cassandra, avoid global secondary indexes (GSI) as they can

become a bottleneck under heavy write loads.

3. Write Optimization

 Batch Writes: Use batch writes to reduce overhead.
However, ensure that batch sizes are optimized to prevent
overwhelming the system.

 Write Consistency Levels: Tune the consistency level of
write operations based on your application’s requirements.

 Compaction and Write-Ahead Logs (WAL): Tune
compaction settings to ensure that data is compacted in an

optimal way. Also, consider adjusting write-ahead log
settings to strike a balance between durability and

performance.

4. Read Optimization

 Read Consistency Levels: Similar to writes, tune the read
consistency levels.

 Caching: Leverage caching mechanisms to reduce repeated

access to frequently read data. Use tools like memcached,
Redis, or the built-in caching capabilities of the NoSQL

database.
 Pre-fetching Data: If you can predict access patterns, you

can pre-fetch or pre-load data into memory to avoid cold

start read latency.

5. Concurrency & Thread Tuning

 Thread Pools: Adjust thread pool sizes to better utilize
available hardware resources.

 Concurrent Operations: Tune the number of concurrent

operations per node and across nodes to maximize

throughput.

6. Data Compaction & Garbage Collection

 Compaction Strategy: In column-oriented NoSQL systems,
data compaction is crucial. Tune the compaction strategy

 Garbage Collection: If you’re using a JVM-based column

store (like HBase or Cassandra), garbage collection can

impact performance.

7. Replication & Fault Tolerance

 Replication Factor: Tune the replication factor based on
your consistency requirements and fault tolerance needs.

 Consistency vs Availability: Balance between consistency
and availability by choosing appropriate settings like

QUORUM or ONE for consistency levels, and make sure the

data model supports eventual consistency for scalability.

8. Data Compression

 Column-Specific Compression: Many column-oriented
NoSQL databases allow you to choose different compression
algorithms per column family or table.

 Compaction and Compression Settings: Tune the
frequency of compactions, as too frequent compactions may

degrade performance, while infrequent compactions may

result in excessive storage consumption.

PERFORMANCE TUNE DOCUMENT ORIENTED NOSQL

DATABASES

Performance tuning for document-oriented NoSQL databases is

critical to ensure optimal operation as these databases handle

large volumes of unstructured or semi-structured data.

1. Schema Design

 Proper Data Modelling: Design your documents to match
your application's query patterns.

 Use of Indexing: Create indexes on fields that are

frequently queried or used for sorting. Be mindful of too
many indexes, as they can degrade performance during

writes.
o Compound Indexes: Useful for queries that filter by

multiple fields.
o Text Indexes: Helpful for full-text search capabilities.

 Avoid Large Documents: Keep documents small and
manageable in size. Large documents can slow down read

and write operations due to increased I/O.
 Use of Batching: Store and retrieve multiple documents in

a single request to reduce network overhead.

2. Index Optimization

 Limit Indexes: Indexes are useful, but they come at a cost.
Having too many indexes can slow down write operations.
Focus only on essential indexes for your queries.

 Index Maintenance: Periodically review and drop unused
indexes.

 Sparse Indexes: When some documents do not have the
indexed field, sparse indexes can help save space and

improve performance.
 TTL Indexes: Time-to-live (TTL) indexes are valuable for

automatically deleting expired documents, reducing the

overhead of manually managing data.

3. Read and Write Optimization

 Read Concern: In systems like MongoDB, set the
appropriate read concern to control consistency. Use

"eventual consistency" if strict consistency is not necessary
to achieve better performance.

 Write Concern: Similar to read concern, write concern
determines the level of acknowledgment required for write

operations. Lower write concern values can speed up writes
but may risk data integrity.

 Bulk Operations: When inserting, updating, or deleting
large sets of documents, use bulk operations to minimize

overhead and improve throughput.
 Sharding: Sharding distributes data across multiple

servers, which improves scalability and performance for
large datasets. Choose an appropriate shard key based on

access patterns.

4. Memory and Caching

 Memory Allocation: Ensure sufficient memory is allocated
to the database. If the working set doesn’t fit into memory,

performance will degrade due to disk I/O.
 Data Caching: Some NoSQL databases provide built-in

caching . Leverage these caches effectively to avoid excessive
disk I/O.

 Cache Management: Adjust cache size based on your
application needs. Keep frequently accessed data in memory

to improve response times.

5. Concurrency and Locking

 Concurrency Control: Ensure that your database’s
concurrency control mechanism is properly tuned. This can

help prevent bottlenecks and improve performance under
high load.

 Optimize Locking: Locking can hinder performance,

especially with write-heavy workloads.

Example: MongoDB, uses a document-level lock to minimize

contention, but it’s important to avoid large updates that

may lock the entire document.

 Transactions: Use transactions judiciously. While
transactions provide strong consistency guarantees, they
can impact performance. Make sure to limit the scope and

duration of transactions.

6. Monitoring and Profiling.

 Query Profiling: Use query profiling tools to identify slow
queries and optimize them.

 System Monitoring: Keep an eye on system metrics like
CPU, memory, disk I/O, and network performance to

identify resource bottlenecks.
 Slow Query Logs: Monitor slow query logs to identify

problematic queries and optimize them by adding indexes or

adjusting the query logic.

7. Data Replication and Fault Tolerance

 Replica Sets: Set up replica sets for high availability.
Replication helps with failover and read scaling by
distributing read requests across secondaries, but ensure

it’s properly configured to balance consistency and
performance.

 Secondary Read Preference: Direct read operations to
secondary replicas for non-critical data to offload the

primary replica.

8. Compression and Data Storage

 Data Compression: Enable compression on data to reduce
storage overhead. This is especially important for large
datasets in document databases.

 Data Compaction: Periodically compact data to reclaim

disk space.

9. Handling High Write Throughput

 Write-Heavy Workloads: For applications with heavy write
loads, consider adjusting the write concern, using batch

processing, and taking advantage of background writes
where possible.

 Avoid Hotspots in Sharding: Ensure that data is evenly
distributed across shards to avoid situations where one

shard gets overloaded with writes.

10. Optimize Networking

 Connection Pooling: Use connection pools to avoid the
overhead of establishing new connections repeatedly. Most

NoSQL databases support connection pooling out of the box.
 Replication Lag: Monitor replication lag in replica sets,

especially when using secondaries for read scaling. High

replication lag can cause stale reads.

Example: MongoDB

 Indexing: Use compound indexes to support queries that
filter by multiple fields.

 Sharding: Choose a shard key that distributes documents
evenly to avoid unbalanced shards.

 Aggregation Pipeline: Optimize aggregation pipelines to
reduce the number of stages and unnecessary

computations.

 UNIT – II

 Comparison of relational
databases to new NoSQL stores

 MongoDB,

 Cassandra,

 HBASE,

 Neo4j use and deployment,

 Application,

 RDBMS approach,

 Challenges NoSQL approach,

 Key-Value and Document Data

Models,

 Column-Family Stores,

 Aggregate-Oriented Databases

I.
 COMPARISON OF RELATIONAL DATABASES TO NEW NOSQL

STORES :

 Relational Database :

RDBMS stands for Relational Database Management Systems.

 It is most popular database. In it, data is store in the form of row
that is in the form of tuple.

 It contain numbers of table and data can be easily accessed
because data is store in the table. This Model was proposed by

E.F. Codd.

 NoSQL :
NoSQL Database stands for a non-SQL database.

 NoSQL database doesn’t use table to store the data like relational
database.

 It is used for storing and fetching the data in database and
generally used to store the large amount of data.

 It supports query language and provides better performance.

Difference between Relational database and NoSQL :

Relational Database NoSQL

It is used to handle data coming in

low velocity.

It is used to handle data

coming in high velocity.

It gives only read scalability.

It gives both read and write

scalability.

It manages structured data. It manages all type of data.

Data arrives from one or few

locations.

Data arrives from many

locations.

It supports complex transactions. It supports simple transactions.

It has single point of failure. No single point of failure.

It handles data in less volume. It handles data in high volume.

Transactions written in one

location.

Transactions written in many

locations.

support ACID properties compliance

doesn’t support ACID

properties

Its difficult to make changes in

database once it is defined

Enables easy and frequent

changes to database

schema is mandatory to store the

data schema design is not required

Deployed in vertical fashion. Deployed in Horizontal fashion.

II.MONGODB:

MongoDB stands out as a leading NoSQL database, offering an open-

source, document-oriented approach that diverges from traditional
relational databases. Unlike SQL databases, MongoDB stores data in

BSON format, akin to JSON, allowing for more flexible data storage and
retrieval. In this article, We will get a in detailed knowledge

about MongoDB.

What is MongoDB?
 MongoDB the most popular NoSQL database, is an open-source

document-oriented database. The term ‘NoSQL’ means ‘non-

relational‘.
 It means that MongoDB isn’t based on the table-like relational

database structure but provides an altogether different mechanism
for the storage and retrieval of data. This format of storage is

called BSON (similar to JSON format).

A simple MongoDB document Structure:

{

 title: 'Geeksforgeeks',
 by: 'Harshit Gupta',

 url: 'https://www.geeksforgeeks.org',
 type: 'NoSQL'

}

 SQL databases store data in tabular format. This data is stored in a

predefined data model which is not very much flexible for today’s

real-world highly growing applications.

 Modern applications are more networked, social and interactive

than ever. Applications are storing more and more data and are

accessing it at higher rates.

 Relational Database Management System(RDBMS) is not the

correct choice when it comes to handling big data by the virtue of

their design since they are not horizontally scalable. If the database

runs on a single server, then it will reach a scaling limit.

https://www.geeksforgeeks.org/mongodb-an-introduction/
https://www.geeksforgeeks.org/introduction-to-nosql/
https://www.geeksforgeeks.org/what-is-bson/

 NoSQL databases are more scalable and provide superior

performance. MongoDB is such a NoSQL database that scales by

adding more and more servers and increases productivity with its

flexible document model.

MongoDB database features

 Document Oriented: MongoDB stores the main subject in the

minimal number of documents and not by breaking it up into
multiple relational structures like RDBMS. For example, it stores all

the information of a computer in a single document called Computer
and not in distinct relational structures like CPU, RAM, Hard

disk etc.
 Indexing: Without indexing, a database would have to scan every

document of a collection to select those that match the query which
would be inefficient. So, for efficient searching Indexing is a must and
MongoDB uses it to process huge volumes of data in very less time.

 Scalability: MongoDB
scales horizontally using sharding (partitioning data across

various servers). Data is partitioned into data chunks using
the shard key and these data chunks are evenly distributed across

shards that reside across many physical servers. Also, new machines
can be added to a running database.

 Replication and High Availability: MongoDB increases the data
availability with multiple copies of data on different servers. By

providing redundancy, it protects the database from hardware
failures. If one server goes down, the data can be retrieved easily from

other active servers which also had the data stored on them.
 Aggregation: Aggregation operations process data records and return

the computed results. It is similar to the GROUPBY clause in SQL. A
few aggregation expressions are sum, avg, min, max, etc

MongoDB Uses:

MongoDB is preferred over RDBMS in the following scenarios:

 Big Data: If we have huge amount of data to be stored in tables, think
of MongoDB before RDBMS databases. MongoDB has built-in

solution for partitioning and sharding our database.
 Unstable Schema: Adding a new column in RDBMS is hard whereas

MongoDB is schema-less. Adding a new field does not effect old
documents and will be very easy.

 Distributed data Since multiple copies of data are stored across
different servers, recovery of data is instant and safe even if there is a

hardware failure.

III. CASSANDRA

https://www.geeksforgeeks.org/indexing-in-mongodb/
https://www.geeksforgeeks.org/what-is-sharding/
https://www.geeksforgeeks.org/shard-keys-in-mongodb/
https://www.geeksforgeeks.org/aggregation-in-mongodb/
https://www.geeksforgeeks.org/sql-group-by/
https://www.geeksforgeeks.org/what-is-database/

Apache Cassandra is an open-source NoSQL database that is used for
handling big data. Apache Cassandra has the capability to handle

structured, semi-structured, and unstructured data. Apache Cassandra
was originally developed at Facebook after that it was open-sourced in

2008 and after that, it became one of the top-level Apache projects in
2010.

Features of Cassandra:
1. It is scalable.
2.It is flexible (can accept structured, semi-structured, and

unstructured data).
3. It doesn’t support ACID Transactions

4. It is highly available and fault-tolerant.
5. It is open source.

Figure-1: Masterless ring architecture of Cassandra

Apache Cassandra is a highly scalable, distributed database that strictly follows the

principle of the CAP (Consistency Availability and Partition tolerance) theorem.

Figure-2:
CAP Theorem

In Apache Cassandra, there is no master-client architecture. It has a
peer-to-peer architecture.

In Apache Cassandra, we can create multiple copies of data at the time
of keyspace creation.

https://www.geeksforgeeks.org/acid-properties-in-dbms/
https://www.geeksforgeeks.org/fault-tolerance-techniques-in-computer-system/

We can simply define replication strategy and RF (Replication Factor) to
create multiple copies of data.

In this example, we define RF (Replication Factor) as 3 which simply

means that we are creating here 3 copies of data across multiple nodes
in a clockwise direction.

Example :

CREATE KEYSPACE Example

WITH replication = {'class': 'NetworkTopologyStrategy',

 'replication_factor': '3'};

Figure-3: RF = 3

cqlsh: CQL shell cqlsh is a command-line shell for interacting with
Cassandra through CQL (Cassandra Query Language).

CQL query for Basic Operation:
Step1: To create keyspace use the following CQL query.

CREATE KEYSPACE Emp

WITH replication = {'class': 'SimpleStrategy', 'replication_factor': '1'};

Step2: CQL query for using keyspace

Syntax:

USE keyspace-name

USE Emp;

Step-3: To create a table use the following CQL query.

Example:

CREATE TABLE Emp_table (name text PRIMARY KEY, Emp_id int,
 Emp_city text,

 Emp_email text);

Step-4: To insert into Emp_table use the following CQL query.

Insert into Emp_table(name, Emp_id, Emp_city, Emp_email)

 VALUES ('ashish', 1001, 'Delhi', 'ashish05.rana05@gmail.com');

Insert into Emp_table(name, Emp_id, Emp_city, Emp_email)

 VALUES ('Ashish Gupta', 1001, 'Bangalore', 'ashish@gmail.com');

Insert into Emp_table(name, Emp_id, Emp_city, Emp_email)

 VALUES ('amit ', 1002, 'noida', 'abc@gmail.com');

Step-5: To read data use the following CQl query.

SELECT * FROM Emp_table;

IV. HBASE

HBase is a data model that is similar to Google’s big table.

It is an open source, distributed database developed by Apache software
foundation written in Java.

 HBase is an essential part of our Hadoop ecosystem.
 HBase runs on top of HDFS (Hadoop Distributed File System).

 It can store massive amounts of data from terabytes to petabytes.
It is column oriented and horizontally scalable.

Figure – History of HBase

 Applications of Apache HBase:

 Real-time analytics: HBase is an excellent choice for real-time
analytics applications that require low-latency data access. It
provides fast read and write performance and can handle large

amounts of data, making it suitable for real-time data analysis.

 Social media applications: HBase is an ideal database for social
media applications that require high scalability and performance.

It can handle the large volume of data generated by social media
platforms and provide real-time analytics capabilities.

 IoT applications: HBase can be used for Internet of Things (IoT)
applications that require storing and processing large volumes of
sensor data. HBase’s scalable architecture and fast write

performance make it a suitable choice for IoT applications that
require low-latency data processing.

 Online transaction processing: HBase can be used as an online
transaction processing (OLTP) database, providing high
availability, consistency, and low-latency data access. HBase’s

distributed architecture and automatic failover capabilities make it
a good fit for OLTP applications that require high availability.

 Ad serving and clickstream analysis: HBase can be used to store
and process large volumes of clickstream data for ad serving and
clickstream analysis. HBase’s column-oriented data storage and

indexing capabilities make it a good fit for these types of
applications.

Features of HBase –

 It is linearly scalable across various nodes as well as modularly
scalable, as it divided across various nodes.

 HBase provides consistent read and writes.

 It provides atomic read and write means during one read or write

process, all other processes are prevented from performing any
read or write operations.

 It provides easy to use Java API for client access.

 It supports Thrift and REST API for non-Java front ends which
supports XML, Protobuf and binary data encoding options.

 It supports a Block Cache and Bloom Filters for real-time queries
and for high volume query optimization.

 HBase provides automatic failure support between Region
Servers.

 It support for exporting metrics with the Hadoop metrics

subsystem to files.

 It doesn’t enforce relationship within your data.

 It is a platform for storing and retrieving data with random access.

RDBMS Vs HBase –

 RDBMS is mostly Row Oriented whereas HBase is Column
Oriented.

 RDBMS has fixed schema but in HBase we can scale or add
columns in run time also.

 RDBMS is good for structured data whereas HBase is good for
semi-structured data.

 RDBMS is optimized for joins but HBase is not optimized for joins.

Advantages Of Apache HBase:

 Scalability: HBase can handle extremely large datasets that can
be distributed across a cluster of machines. It is designed to scale
horizontally by adding more nodes to the cluster, which allows it to

handle increasingly larger amounts of data.

 High-performance: HBase is optimized for low-latency, high-
throughput access to data. It uses a distributed architecture that

allows it to process large amounts of data in parallel, which can
result in faster query response times.

 Flexible data model: HBase’s column-oriented data model allows
for flexible schema design and supports sparse datasets. This can
make it easier to work with data that has a variable or evolving

schema.

 Fault tolerance: HBase is designed to be fault-tolerant by
replicating data across multiple nodes in the cluster. This helps

ensure that data is not lost in the event of a hardware or network
failure.

Disadvantages Of Apache HBase:

 Complexity: HBase can be complex to set up and manage. It
requires knowledge of the Hadoop ecosystem and distributed
systems concepts, which can be a steep learning curve for some

users.

 Limited query language: HBase’s query language, HBase Shell, is
not as feature-rich as SQL. This can make it difficult to perform

complex queries and analyses.

 No support for transactions: HBase does not support
transactions, which can make it difficult to maintain data

consistency in some use cases.

 Not suitable for all use cases: HBase is best suited for use cases
where high throughput and low-latency access to large datasets is

required. It may not be the best choice for applications that require
real-time processing or strong consistency guarantees.

V.NEO4J USE AND DEPLOYMENT

 Neo4j is a powerful, high-performance, open-source graph
database that enables the efficient management and querying of
highly connected data. Unlike traditional relational databases,

Neo4j uses graph structures to represent and store data, making it
uniquely suited for applications involving complex relationships

and dynamic, interconnected data.

 As the world’s leading graph database, Neo4j has become essential
for organizations looking to leverage the power of graph technology

for a variety of use cases.

 Neo4j is a powerful and flexible graph database management
system, designed to efficiently store and query highly

interconnected data. Unlike traditional relational databases, which
store data in tables, Neo4j uses a graph structure to represent and

navigate relationships between data entities.

Neo4j structure

Neo4j stores and present the data in the form of graph not in tabular

format or not in a Json format.
The whole data is represented by nodes and there you can create a

relationship between nodes.
That means the whole database collection will look like a graph, that’s

why it is making it unique from other database management system.

https://www.geeksforgeeks.org/what-is-graph-database/
https://www.geeksforgeeks.org/what-is-graph-database/
https://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-set-1/
https://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-set-1/

Graph Database:

A graph database uses graph theory to store, map, and query
relationships. It consists of nodes, edges, and properties, where:
 Nodes represent entities such as people, businesses, or any data

item.
 Edges (or relationships) connect nodes and illustrate how entities are

related.
 Properties provide additional information about nodes and

relationships.
This structure allows graph databases to model real-world scenarios

more naturally and intuitively than traditional relational databases.

Features of Neo4J

 High Performance and Scalability

 Neo4j is designed to handle massive amounts of data and complex

queries quickly and efficiently. Its native graph storage and
processing engine ensure high performance and scalability, even
with billions of nodes and relationships.

 Cypher Query Language

 Neo4j uses Cypher, a powerful and expressive query language
tailored for graph databases. Cypher makes it easy to create, read,

update, and delete data, allowing users to perform complex queries
with concise and readable syntax.

 ACID Compliance

 Neo4j ensures data integrity and reliability
through ACID (Atomicity, Consistency, Isolation, Durability)

compliance. This guarantees that all database transactions are

https://www.geeksforgeeks.org/neo4j-query-cypher-language/
https://www.geeksforgeeks.org/acid-properties-in-dbms/

processed reliably and ensures the consistency of the database
even in the event of failures.

 Flexible Schema

 Unlike traditional databases, Neo4j offers a flexible schema,
allowing users to add or modify data models without downtime.

This adaptability makes it ideal for evolving data structures and
rapidly changing business requirements.

Neo4j Usage

 Database Management System has so many interconnecting
relationships then Neo4j will be the best choice.

 Neo4j is highly preferable to store data that contains multiple

connections between nodes.

 Neo4j is surrounded by relationships but there is no need to set

up primary key or foreign key constraints to any data.

 Neo4j extremely suited for Networking data, below is the list of
data areas

 used in Database Management System.
 Social network analysis like in Facebook, Twitter or in Instagram

 Network Diagram

 Fraud Detection

 Graph based searched of digital assets

 Data Management

 Real-time product recommendation

Advantages of Neo4j:

 Representation of connected data is very easy.

 Retrieval or traversal or navigation of connected data is very fast.

 It uses simple and powerful data model.

 It can represent semi-structured data is easy.

Disadvantages of Neo4j:

 OLAP support for these types of databases is not well executed.

 In this area, still there are lots of research happening around.

Neo4j Deployment:

Neo4j is a popular graph database that uses graph structures to store
and query data.

Deploying Neo4j can be done in several ways, depending on your use
case and environment.

https://www.geeksforgeeks.org/difference-between-primary-key-and-foreign-key/

1. Local Deployment (On a Single Machine)

Neo4j run locally on your machine either using its official distributions

or Docker.

Using the Official Distribution:

1. Download Neo4j:
o Go to the official Neo4j download page:

https://neo4j.com/download/

o Download the appropriate package for your OS (Windows,
Mac, Linux).

2. Installation:

o Windows: Run the .exe file and follow the setup instructions.

Mac: Use Homebrew:

 Command: brew install neo4j

Linux (Debian-based):

wget -O - https://debian.neo4j.org/neotechnology.gpg.key | sudo apt-

key add - echo "deb http://debian.neo4j.org/repo stable 4.x" | sudo tee -
a /etc/apt/sources.list.d/neo4j.list sudo apt-get update sudo apt-get

install neo4j

Start Neo4j:

Windows: The Neo4j desktop application will provide a user interface, or

you can use the command prompt:

Command: neo4j console

Linux/Mac:

 If installed via package manager, you can start with:

sudo systemctl start neo4j

Accessing Neo4j:

Open your web browser and go to http://localhost:7474/ to access the

Neo4j Browser interface (default credentials: neo4j/neo4j).

Using Docker:

You can also run Neo4j inside a Docker container:

docker run --name neo4j -d -p 7474:7474 -p 7687:7687 --env

NEO4J_AUTH=neo4j/neo4j neo4j:latest

After the container is running, open your browser and go to

http://localhost:7474.

Backup and Monitoring

For production environments, it’s essential to set up backup and

monitoring systems for Neo4j.

 Backup:

o Neo4j supports manual backups using the neo4j-admin tool.
o Neo4j also supports automated backups, which can be

scheduled based on your needs.
 Monitoring:

o Neo4j integrates with several monitoring tools, such as
Prometheus and Grafana, to collect and visualize metrics

related to database performance.

Scaling Neo4j

Scaling Neo4j can be done vertically (increasing resources on a single

node) or horizontally (adding more nodes).

 Vertical Scaling:
o Increase CPU, RAM, and disk storage on a single server.

 Horizontal Scaling:
o Clustering (Causal Clusters) allows you to add more nodes for

load balancing, data replication, and high availability.

VI .NOSQL APPLICATION:
1. Session Store

 Managing session data using relational database is very difficult.
 The right approach is to use a global session store, which manages

session information for every user who visits the site.
 NOSQL is suitable for storing such web application session

information very is large in size.
 Since the session data is unstructured in form, it is easy to store it

in schema less documents rather than in relation database record.
2. User Profile Store

 To enable online transactions, user preferences, authentication of
user and more, it is required to store the user profile by web and

mobile application.
 In recent time users of web and mobile application are grown very

rapidly. The relational database could not handle such large
volume of user profile data which growing rapidly, as it is limited to
single server.

http://localhost:7474/

 Using NOSQL capacity can be easily increased by adding server,
which makes scaling cost effective

3. Content and Metadata Store
 Many companies like publication houses require a place where they

can store large amount of data, which include articles, digital
content and e-books, in order to merge various tools for learning in

single platform
 The applications which are content based, for such application

metadata is very frequently accessed data which need less response

times.
 For building applications based on content, use of NoSQL provide

flexibility in faster access to data and to store different types of
contents

4. Mobile Applications
 Since the smartphone users are increasing very rapidly, mobile

applications face problems related to growth and volume.
 Using NoSQL database mobile application development can be

started with small size and can be easily expanded as the number
of user increases, which is very difficult if you consider relational

databases.
 Since NoSQL database store the data in schema-less for the

application developer can update the apps without having to do
major modification in database.

 The mobile app companies like Kobo and Playtika, uses NOSQL and
serving millions of users across the world.

5. Third-Party Data Aggregation
 Frequently a business require to access data produced by third

party. For instance, a consumer packaged goods company may

require to get sales data from stores as well as shopper’s purchase
history.

 In such scenarios, NoSQL databases are suitable, since NoSQL
databases can manage huge amount of data which is generating at

high speed from various data sources.
6. Internet of Things

 Today, billions of devices are connected to internet, such as
smartphones, tablets, home appliances, systems installed in

hospitals, cars and warehouses. For such devices large volume and
variety of data is generated and keep on generating.

 Relational databases are unable to store such data. The NOSQL
permits organizations to expand concurrent access to data from

billions of devices and systems which are connected, store huge
amount of data and meet the required performance.

7. E-Commerce
 E-commerce companies use NoSQL for store huge volume of data

and large amount of request from user.
8. Social Gaming

 Data-intensive applications such as social games which can grow
users to millions. Such a growth in number of users as well as

amount of data requires a database system which can store such
data and can be scaled to incorporate number of growing users

NOSQL is suitable for such applications.
 NOSQL has been used by some of the mobile gaming companies

like, electronic arts, zynga and tencent.
9. Ad Targeting

 Displaying ads or offers on the current web page is a decision with

direct income To determine what group of users to target, on web
page where to display ads, the platforms gathers behavioral and

demographic characteristics of users.
 A NoSQL database enables ad companies to track user details and

also place the very quickly and increases the probability of clicks.
 AOL, Mediamind and PayPal are some of the ad targeting

companies which uses NoSQL

VII. RDBMS APPROACH

 RDBMS stands for Relational Database Management Systems.

 It is a program that allows us to create, delete, and update a
relational database.

 A Relational Database is a database system that stores and
retrieves data in a tabular format organized in the form of rows

and columns.

 RDBMS technology has continued to evolve, incorporating
advancements in scalability, performance, and support for

complex queries, cementing its role as a cornerstone of modern

database management.

Relational Database Management Systems maintains data integrity by

simulating the following features:
 Entity Integrity: No two records of the database table can be

completely duplicate.

 Referential Integrity: Only the rows of those tables can be deleted
which are not used by other tables. Otherwise, it may lead to data

inconsistency.
 User-defined Integrity: Rules defined by the users based on

confidentiality and access.
 Domain integrity: The columns of the database tables are enclosed

within some structured limits, based on default values, type of data
or ranges.

Database Table:

 A table is a collection of related data in an organized manner in
the form of rows and columns.

https://www.geeksforgeeks.org/what-is-data-inconsistency-in-dbms/
https://www.geeksforgeeks.org/what-is-data-inconsistency-in-dbms/

 It is an organized arrangement of data and information in tabular
form containing rows and columns, making it easier to
understand and compare data.

 The pictorial representation of the table and its different
components containing the data about different students that is
ID, name, Age, and course.

Features of RDBMS

 Data must be stored in tabular form in DB file, it should be organized
in the form of rows and columns.

 Each row of table is called record/tuple .
 Collection of such records is known as the cardinality of the table

 Each column of the table is called an attribute/field.
 Collection of such columns is called the arity of the table.
 No two records of the DB table can be same.

 Data duplicity is therefore avoided by using a candidate key.
 Candidate Key is a minimum set of attributes required to identify

each record uniquely.
 Tables are related to each other with the help for foreign keys.

 Database tables also allow NULL values, if the values of any of the
element of the table are not filled or are missing, it becomes a NULL

value, which is not equivalent to zero. (NOTE: Primary key cannot
have a NULL value).

https://www.geeksforgeeks.org/tuple-in-dbms/
https://www.geeksforgeeks.org/candidate-key-in-dbms/
https://www.geeksforgeeks.org/primary-key-in-dbms/

Uses of RDBMS

 RDBMS is used in Customer Relationship Management.
 It is used in Online Retail Platforms.

 It is used in Hospital Management Systems.
 It is used in Business Intelligence.

 It is used in Data Warehousing

SQL Query in RDBMS

Creating a Table

Syntax:
CREATE TABLE table_name (
column1_name datatype constraint,
column2_name datatype constraint,
);

Example:
CREATE TABLE Employees (
EmployeeID INT PRIMARY KEY,
FirstName VARCHAR(50),

LastName VARCHAR(50),
BirthDate DATE,
Salary DECIMAL(10, 2)
);

2. Inserting Data into a Table

Syntax:
INSERT INTO table_name (column1_name, column2_name, …)
VALUES (value1, value2, …);

Example:
INSERT INTO Employees (EmployeeID, FirstName, LastName, BirthDate, Salary)
VALUES (1, ‘John’, ‘Doe’, ‘1985-06-15’, 55000.00);

3. Querying Data (SELECT)

Syntax:
SELECT column1_name, column2_name, …
FROM table_name
WHERE condition;

Example:
SELECT FirstName, LastName, Salary
FROM Employees
WHERE Salary > 50000;

4. Deleting Data from a Table

Syntax:
DELETE FROM table_name
WHERE condition;

Example:
DELETE FROM Employees
WHERE EmployeeID = 1;

5. . Dropping a Table

Syntax:
DROP TABLE table_name;

Example:
DROP TABLE Employees;

https://www.geeksforgeeks.org/customer-relationship-management-crm/
https://www.geeksforgeeks.org/what-is-business-intelligence/
https://www.geeksforgeeks.org/data-warehousing/

Advantages of RDBMS

 Easy to Manage: Each table can be independently manipulated
without affecting others.

 Security: It is more secure consisting of multiple levels of security.
Access of data shared can be limited.

 Flexible: Updating of data can be done at a single point without
making amendments at multiple files. Databases can easily be

extended to incorporate more records, thus providing greater
scalability. Also, facilitates easy application of SQL queries.

 Users: RDBMS supports client-side architecture storing multiple
users together.

 Facilitates storage and retrieval of large amount of data.
 Easy Data Handling:

o Data fetching is faster because of relational architecture.
o Data redundancy or duplicity is avoided due to keys, indexes,

and normalization principles.
o Data consistency is ensured because RDBMS is based

on ACID properties for data transactions(Atomicity

Consistency Isolation Durability).
 Fault Tolerance: Replication of databases provides simultaneous

access and helps the system recover in case of disasters, such as
power failures or sudden shutdowns.

Disadvantages of RDBMS

 High Cost and Extensive Hardware and Software Support: Huge

costs and setups are required to make these systems functional.
 Scalability: In case of addition of more data, servers along with

additional power, and memory are required.
 Complexity: Voluminous data creates complexity in understanding of

relations and may lower down the performance.

 Structured Limits: The fields or columns of a relational database
system is enclosed within various limits, which may lead to loss of

data.

VIII.CHALLENGES NOSQL APPROACH :
 Back-ups in Application Consistent:

 Determining the sequence of changes across replicas, which is critical
in selecting which values should compose a snapshot, is a typical

difficulty in quorum-based replication systems. For example,
determining a rigorous ordering between two write requests to the

same database object that arrived at two distinct nodes at the same
time is challenging. As a result of the absence of ordering,

determining the most recent value of a database item at any given
time is difficult.

 Maturity: NoSQL proponents would agree that increasing demands
will inevitably lead to obsolescence, but the RDBMS maturity cycle

https://www.geeksforgeeks.org/client-server-model/
https://www.geeksforgeeks.org/acid-properties-in-dbms/

appears to be more secure. RDBMS is more reliable and functional
since it has been around for decades. Many NoSQL alternatives are

still in the pre-production stage and do not yet have all of their
essential features implemented.

 Database and node failures during backups and restores : Node
failures are common in NoSQL databases since they are designed to

grow to hundreds of nodes. As a result, any backup method must be
able to account for data collection failures from down nodes and their
influence on quorum consistency. On the other hand, restorations

must take into consideration failed cluster nodes and modify data re
population correspondingly.

 Analytics and business intelligence: NoSQL was created to fulfill
the needs of Web 2.0 applications, and as a result, all of its

characteristics are geared toward that goal. Other commercial
systems, on the other hand, necessitate moving beyond the insert-

read-update-delete cycle. Even the most basic queries need extensive
programming knowledge, and integrated BI tools are insufficient.

 Performance : Consider the same system as before in terms of
performance (RPOs and RTOs). Because it is impossible to parallelize

database file processing beyond a certain point, it will be impossible
to achieve customer SLAs in terms of RTO if per row processing is

sluggish. Due to the same parallelization limitations, recovery
procedures are also impacted. This means that backup and recovery

processing for 100 billion rows over 10 million files must be quick,
and a solution must dramatically minimize per-row and per-file

database file processing.
 Data Integrity: Verifying data integrity at the block level is another

issue with distributed NoSQL databases. Checksum work for scale-up

databases because the restored data is physically identical to the
backup data. The restored data in scale-out databases is semantically

comparable to the backup data, but it is not physically identical. In
this situation, we’ll need to come up with a unique method for

identifying semantic equivalence between recovered and backup data,
which will allow us to spot data corruption issues that may arise

throughout the backup and restoration process.
 Expertise: All NoSQL developers should be considered to be in the

early stages of their careers and have yet to achieve expert status.
While this problem will eventually be resolved, selecting the correct

developer is now difficult.
 De-duplication: In traditional database systems, de-duplication is

simple—a block with identical bitwise values. Data copies are not
always identical in modern NoSQL database storage systems because

the sequencing and flushing of changes vary between nodes, creating
a new challenge for de-duplication.

KEY-VALUE DATA MODEL:

 A key-value data model or database is also referred to as a key-
value store.

 It is a non-relational type of database.

 In this, an associative array is used as a basic database in which

an individual key is linked with just one value in a collection.

 For the values, keys are special identifiers.

 Any kind of entity can be valued.

 The collection of key-value pairs stored on separate records is
called key-value databases and they do not have an already

defined structure.

Working of key-value databases :

 A number of easy strings or even a complicated entity are referred

to as a value that is associated with a key by a key-value database,

which is utilized to monitor the entity.

 In many programming paradigms, a key-value database resembles

a map object or array, or dictionary, which is controlled by a

DBMS.

Usage a key-value database:

 User session attributes in an online app like finance or gaming, which
is referred to as real-time random data access.

 Caching mechanism for repeatedly accessing data or key-based
design.

 The application is developed on queries that are based on keys.

Features:

One of the most un-complex kinds of NoSQL data models.

 For storing, getting, and removing data, key-value databases utilize
simple functions.

 Querying language is not present in key-value databases.
 Built-in redundancy makes this database more reliable.

Advantages:

 It is very easy to use. Due to the simplicity of the database, data can
accept any kind, or even different kinds when required.

 Its response time is fast due to its simplicity, given that the remaining
environment near it is very much constructed and improved.

 Key-value store databases are scalable vertically as well as
horizontally.

 Built-in redundancy makes this database more reliable.

Disadvantages:

 As querying language is not present in key-value databases,
transportation of queries from one database to a different database

cannot be done.
 The key-value store database is not refined.

Examples of key-value databases:

 Couchbase: It permits SQL-style querying and searching for text.
 Amazon DynamoDB: The key-value database which is mostly used is

Amazon DynamoDB as it is a trusted database used by a large
number of users. It can easily handle a large number of requests

every day and it also provides various security options.
 Riak: It is the database used to develop applications.
 Aerospike: It is an open-source and real-time database working with

billions of exchanges.
 Berkeley DB: It is a high-performance and open-source database

providing scalability.

DOCUMENT DATA MODEL:

 A Document Data Model is a lot different than other data models
because it stores data in JSON, BSON, or XML documents.

 Documents are stored and retrieved in such a way that it becomes

close to the data objects which are used in many applications

which means very less translations are required to use data in
applications.

 JSON is a native language that is often used to store and query
data too.

Example:

{
"Name" : "Yashodhra",

"Address" : "Near Patel Nagar",
"Email" : "yahoo123@yahoo.com",

"Contact" : "12345"
}

Working of Document Data Model:

 Data model works as a semi-structured data model in which the
records and data associated with them are stored in a single

document i.e data model is not completely unstructured.

 The main thing is data is stored in a document.

Features:

 Document Type Model: As we all know data is stored in documents
rather than tables or graphs, so it becomes easy to map things in

many programming languages.
 Flexible Schema: Overall schema is very much flexible to support

this statement one must know that not all documents in a collection
need to have the same fields.

 Distributed and Resilient: Document data models are very much
dispersed which is the reason behind horizontal scaling and
distribution of data.

 Manageable Query Language: These data models are the ones in
which query language allows the developers to perform CRUD (Create

Read Update Destroy) operations on the data model.

Examples of Document Data Models :
 Amazon DocumentDB

 MongoDB
 Cosmos DB

 ArangoDB
 Couchbase Server

 CouchDB

Advantages:

 Schema-less: These are very good in retaining existing data at
massive volumes because there are absolutely no restrictions in the

format and the structure of data storage.

 Faster creation of document and maintenance: It is very simple to
create a document and apart from this maintenance requires is

almost nothing.
 Open formats: It has a very simple build process that uses XML,

JSON, and its other forms.
 Built-in versioning: It has built-in versioning which means as the

documents grow in size there might be a chance they can grow in
complexity. Versioning decreases conflicts.

Disadvantages:

 Weak Atomicity: It lacks in supporting multi-document ACID

transactions. A change in the document data model involving two
collections will require us to run two separate queries i.e. one for each

collection. This is where it breaks atomicity requirements.
 Consistency Check Limitations: One can search the collections and

documents that are not connected to an author collection but doing
this might create a problem in the performance of database

performance.
 Security: Nowadays many web applications lack security which in

turn results in the leakage of sensitive data. So it becomes a point of

concern, one must pay attention to web app vulnerabilities.

Applications of Document Data Model :

 Content Management: Data models are very much used in creating

various video streaming platforms, blogs, and similar services
Because each is stored as a single document and the database here is

much easier to maintain as the service evolves over time.
 Book Database: These are very much useful in making book

databases because as we know this data model lets us nest.
 Catalog: When it comes to storing and reading catalog files these data

models are very much used because it has a fast reading ability if
incase Catalogs have thousands of attributes stored.

 Analytics Platform: These data models are very much used in the
Analytics Platform.

IX.COLUMN-FAMILY STORES

The relational database stores data in rows also reads the data row by
row, column store is organized as a set of columns.

Columns are of the same type and gain from more efficient
compression, which makes reads faster than before.

Examples of Columnar Data Model: Cassandra and Apache Hadoop
Hbase.

Working of Columnar Data Model:
In Columnar Data Model instead of organizing information into rows, it does in
columns.
Data model is more flexible because it is a type of NoSQL database.
Example:

Row-Oriented Table:

S.No. Name Course Branch ID

01. Tanmay B-Tech Computer 2

02. Abhishek B-Tech Electronics 5

03. Samriddha B-Tech IT 7

04. Aditi B-Tech E & TC 8

 Column – Oriented Table:

S.No. Name ID

01. Tanmay 2

02. Abhishek 5

03. Samriddha 7

04. Aditi 8

Columnar Data Model uses the concept of keyspace, which is like a

schema in relational models.

Advantages of Columnar Data Model :

 Well structured: Since these data models are good at compression so
these are very structured or well organized in terms of storage.

 Flexibility: A large amount of flexibility as it is not necessary for the
columns to look like each other, which means one can add new and

different columns without disrupting the whole database
 Aggregation queries are fast: The most important thing is

aggregation queries are quite fast because a majority of the
information is stored in a column. An example would be Adding up

the total number of students enrolled in one year.
 Scalability: It can be spread across large clusters of machines, even

numbering in thousands.
 Load Times: Since one can easily load a row table in a few seconds

so load times are nearly excellent.

S.No. Branch ID

01. Computer 2

02. Electronics 5

03. IT 7

04. E & TC 8

S.No. Course ID

01. B-Tech 2

02. B-Tech 5

03. B-Tech 7

04. B-Tech 8

Disadvantages of Columnar Data Model:

 Designing indexing Schema: To design an effective and working

schema is too difficult and very time-consuming.
 Suboptimal data loading: incremental data loading is suboptimal

and must be avoided, but this might not be an issue for some users.
 Security vulnerabilities: If security is one of the priorities then it

must be known that the Columnar data model lacks inbuilt security
features in this case, one must look into relational databases.

 Online Transaction Processing (OLTP): Online Transaction
Processing (OLTP) applications are also not compatible with columnar

data models because of the way data is stored.

Applications of Columnar Data Model:

 Columnar Data Model is very much used in various Blogging
Platforms.

 It is used in Content management systems like WordPress, Joomla,
etc.

 It is used in Systems that maintain counters.
 It is used in Systems that require heavy write requests.

 It is used in Services that have expiring usage.

X.AGGREGATE-ORIENTED DATABASES :

 The aggregate-Oriented database is the NoSQL database does not

support ACID transactions.

 Aggregate orientation operations are different compared to relational

database operations.

 The efficiency of the Aggregate-Oriented database is high if the data

transactions and interactions take place within the same aggregate.

 Manipulations can be a single aggregate at a time. Multiple

manipulate aggregates cannot be done at a time in an atomic way.

Aggregate – Oriented databases are classified into four major data

models. They are as follows:

 Key-value
 Document

 Column family
 Graph-based

 key-value Data Model: Key-value and document databases were

strongly aggregate-oriented. The key-value data model contains the key

or Id which is used to access the data of the aggregates. key-value Data

Model is very secure as the aggregates are opaque to the database.

Aggregates are encrypted as the big blog of bits that can be decrypted

with key or id. In the key-value Data Model, we can place data of any

structure and datatypes in it.

 The advantage of the key-value Data Model is that we can store the

sensitive information in the aggregate.

 The disadvantage of this model the database has some general size

limits.

 We can store only the limited data.

 Document Data Model: In Document Data Model we can access the

parts of aggregates. The data in this model can be accessed inflexible

manner. we can submit queries to the database based on the fields in

the aggregate. There is a restriction on the structure and data types of

data to be paced in this data model. The structure of the aggregate can

be accessed by the Document Data Model.

 Column family Data Model: The Column family is also called a two-

level map. But, however, we think about the structure, it has been a

model that influenced later databases such as HBase and Cassandra.

These databases with a big table-style data model are often referred to

as column stores. Column-family models divide the aggregate into

column families. The Column-family model is a two-level aggregate

structure. The first level consists of keys that act as a row identifier that

selects the aggregate. The second-level values in the Column family

Data Model are referred to as columns.

 In the above example, the row key is 234 which selects the aggregate.

Here the row key selects the column families customer and orders. Each

column family contains the columns of data. In the orders column

family, we have the orders placed by the customers.

 Graph Data Model: In a graph data model, the data is stored in nodes

that are connected by edges. This model is preferred to store a huge

amount of complex aggregates and multidimensional data with many

interconnections between them. Graph Data Model has the application

like we can store the Facebook user accounts in the nodes and find out

the friends of the particular user by following the edges of the graph.

 Friends can find of a person by observing this graph data model.

 If there is an edge between two nodes then they are friends.

 The indirect links between the nodes to determine the friend
suggestions.

	NOSQL DATABASE
	UNIT-1
	Introduction
	Types of databases — NoSQL
	1. Document-oriented databases
	2. Key-value databases
	3. Wide-column stores
	Graph databases

	NOSQL ARCHITECTURE
	Querying Data:
	1. Data Modeling
	2. Indexing Strategies
	3. Write Optimization
	4. Read Optimization
	5. Concurrency & Thread Tuning
	6. Data Compaction & Garbage Collection
	8. Data Compression
	1. Schema Design
	2. Index Optimization
	3. Read and Write Optimization
	4. Memory and Caching
	5. Concurrency and Locking
	6. Monitoring and Profiling.
	7. Data Replication and Fault Tolerance
	8. Compression and Data Storage
	10. Optimize Networking
	Example: MongoDB

	What is MongoDB?
	MongoDB Uses:
	Applications of Apache HBase:

	Neo4j structure
	Graph Database:
	Features of Neo4J
	 High Performance and Scalability
	 Cypher Query Language
	 ACID Compliance
	 Flexible Schema

	Neo4j Usage
	Advantages of Neo4j:
	Disadvantages of Neo4j:
	1. Local Deployment (On a Single Machine)
	Using the Official Distribution:
	Backup and Monitoring
	Scaling Neo4j

	Database Table:
	Features of RDBMS
	Uses of RDBMS
	SQL Query in RDBMS
	Creating a Table
	2. Inserting Data into a Table
	3. Querying Data (SELECT)
	4. Deleting Data from a Table
	5. . Dropping a Table

	Advantages of RDBMS
	Disadvantages of RDBMS
	Working of key-value databases :
	Usage a key-value database:
	Features:
	One of the most un-complex kinds of NoSQL data models.
	Advantages:
	Disadvantages:
	Examples of key-value databases:
	Working of Document Data Model:
	Features: (1)
	Advantages: (1)
	Disadvantages: (1)
	Applications of Document Data Model :
	Working of Columnar Data Model:
	Advantages of Columnar Data Model :
	Disadvantages of Columnar Data Model:
	Applications of Columnar Data Model:

