R21 Regulations JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

MASTER OF COMPUTER APPLICATIONS

Course Code	MATHEMATICAL FOUNDATIONS OF COMPUTER	L	Т	P	С
21FC0101	SCIENCE	4	0	0	4
	Semester			Ι	
Course Objectives:					
 Introduces the elementary discrete mathematics for computer science and engineering. 					
• Topics include formal logic notation, methods of proof, induction, sets, relations, graph theory,					
permutations and combinations, counting principles; recurrence relations and generating functions					
Course Outcomes (C9). Student will be able to					
 Demonstrate the ability to understand and construct precise mathematical proofs 					
• Demonstrate the ability to use logic and set theory to formulate precise statements					
• Acquire the knowledge to analyse and solve counting problems on finite and discrete structures					
 Demonstrate the ability to describe and manipulate sequences 					
Demonstrate the ability to apply graph theory in solving computing problems					
UNIT – I	`Ø	Lee	cture	Hrs:	
The Foundations	s Logic and Proofs Propositional Logic, Applications of I	Prop	ositic	onal	Logic,
Propositional Equivalence, Predicates and Quantifiers, Nested Quantifiers, Rules of Inference,					
Introduction to Pr	oofs, Proof Methods and Suategy.				
UNIT – II		Lee	cture	Hrs:	
Basic Structures, Sets, Functions, Sequences, Suns, Matrices and Relations:Sets, Functions, Sequences &					
Summations, Cardinality of Sets and Matrices Relations, Relations and Their Properties, n-ary Relations					
and Their Applications, Representing Relations, Closures of Relations, Equivalence Relations, Partial					
Orderings.		-			
		Lee	cture	Hrs:	•.1
Algorithms, Induction and Recursion: Algorithms, The Growth of Functions, Complexity of Algorithms.					
Induction and Recursion: Mathematical Induction, Strong induction and Well-Ordering, Recursive					
UNIT IV	li ucturar induction, Recursive Argoritinis, riogram Correctness	La	oturo	Urc.	
Discrete Probability and Advanced Counting Techniques: An Introduction to Discrete Probability					
Probability Theory Bayes' Theorem Expected Value and Variance					
Advanced Counting Techniques: Recurrence Relations, Solving Linea, Recurrence Relations, Divide-and-					
Conquer Algorithms and Recurrence Relations, Generating Functions, Inclusion-Exclusion Applications					
of Inclusion-Exclusion.					
UNIT – V					
Graphs: Graphs	and Graph Models, Graph Terminology and Special Types of G	raph	s, Re	prese	nting
Graphs and Graph Isomorphism, Connectivity, Euler and Hamilton Paths, Shortest-Path Problems, Planar					
Graphs, Graph Coloring.					
TEXTBOOKS					
1. Discrete Mathematics and Its Applications with Combinatorics and Graph Theory Conneth H Rosen,					
7 th Edition, TMH.					
REFERENCES					
1. Discrete Mathematical Structures with Applications to Computer Science-J.P. Tremblay and R.					
Manohar, TMH,					
2. Discrete Mathematics for Computer Scientists & Mathematicians: Joe L. Mott, Abraham Kandel, Teodore P. Baker, 2nd ed., Pearson Education					
3. Discrete Mathematics- Richard Johnsonbaugh. 7th ed., Pearson Education.					
4. Discrete Mathematics with Graph Theory- Edgar G. Goodaire, Michael M. Parmenter.					
5. Discrete and Combinatorial Mathematics - an applied introduction: Ralph.P. Grimald, 5th edition,					
Pearson Education.					